

# A Switchable Neutron Spin Filter







J. Stahn & D. Clemens

Laboratorium für Neutronenstreuung, Paul Scherrer Institut & ETH Zürich

# Introduction

Aim: provide a neutron spin polarizer

- switchable
  - ⇒ no need for an additional spin flipper;
- not altering the beam path
- ⇒ simpler lay-out;
- low absorption.

### Approach: remanent Fe/Si supermirrors

- Fe and Si show low absorption:
- transmitted and reflected beam can be used:
- high remanence
- $\Rightarrow$  operation in a weak guide field  $\mathbf{B}_{\text{guide}}$ , no permanent strong field needed;
- high coercitivity
- $\Rightarrow$  operation with magnetization **M** antiparallel to  $\mathbf{B}_{\text{quide}}$ ;
- switching **M**
- $\Rightarrow$  exchange of the polarization of transmitted and reflected beam.[1]

#### **Preparation**: magnetron sputtering on Si waver

- Fe layers show anisotropic stress leading to an easy axes of magnetization.[2]
- reactive sputtering of Si with O<sub>2</sub> and N<sub>2</sub> to
- improve the matching for spin down neutrons,
- reduce stress.

Supermirrors consist of an al-

ternating stack of two materials

with different refractive indices.

The thickness of the layers is cho-

sen in a way so that interference

leads to reflection of the neutrons

up to an angle of incidence of a

In spin polarizing supermirrors

the refractive indices are differ-

ent only for neutrons of one spin

state. This can be fulfilled if one

of the materials is magnetic. [4]

few degree.[3]

- tune magnetic properties.

#### n-Measurements \_

The neutron intensity is measured as a function of  $\omega$  and of  $\mathbf{M}$  for incoming spin up and spin down neutrons separately.

Top view of the set up for transmission and reflectivity measurements:



# Results

- Sample: Fe/Si supermirror on Si. 299 layers (m = 2.5)‡:
- polarized reflectivity measurements were performed on the 2 axis neutron spectrometer TOPSI at SINQ. Switzerland.  $\lambda = 4.74 \text{ Å}$ :
- magnetic hysteresis measured with a vibrating sample magnetometer at the PSI;
- no corrections were applied to the shown data.











#### Supermirrors

Schematic profile of the scattering length density of a supermirror for neutrons with spin parallel

 $ho_{\mathrm{Fe}}(b_{\mathrm{Fe}}+p_{\mathrm{Fe}})\gg
ho_{\mathrm{Si}}b_{\mathrm{Si}}$ 

⇒ high contrast grid ⇒ reflection<sup>†</sup>

and spin antiparallel

s↑↓M

 $\rho_{\rm Fe}(b_{\rm Fe}-p_{\rm Fe}) \approx \rho_{\rm Si}b_{\rm Si}$ ⇒ 'one' thick layer

⇒ transmission to the magnetisation M



A transmission polarizer using the presented supermirrors will be built for the SANS at SINQ

#### References

- [1] D. Clemens et al. Physica B 213 & 214, 942 (1995).
- [2] M. Senthil Kumar et al. IEEE Transactions on Magnetics 35, 3067 (1999)
- [3] J. B. Hayter et al. J. Appl. Cryst. 22, 35-41 (1989)
- [4] P. Høghøj et al. Physica B 268, 355 (1999)
- † for angles within the range of 'total reflection
- $\pm$  m gives the maximum angle of 'total' reflection as a multiple of the critical angle of total reflection of Ni

# Acknowledgments .

These results were obtained within the project TECHNI of the EU program IHP / Networks with financial support from the BBW Switzerland (No. 99.0593).

Contact: Jochen Stahn jochen.stahn@psi.ch