A Switchable Neutron Spin Filter

Jochen Stahn

Laboratorium für Neutronenstreuung Paul Scherrer Institut & ETH Zürich

Motivation

The optimal neutron spin filter:

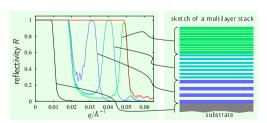
- high efficiency
- low absorption
- compact
- large bandwidth allow for large divergence
- switchable
- no need for a spin flipper
- no magnetic fields
- no interaction with sample(environment)
- non-deflecting
- simpler lay-out

Our aim:

A device fulfilling the last three requirements

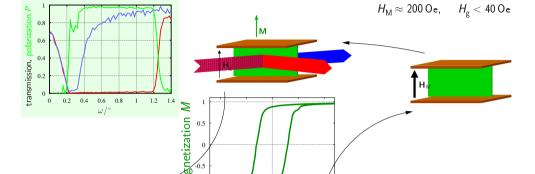
Approach: Fe/Si supermirror on Si with

- easy axis of magnetization
- high remanence
- sufficient coercitive field

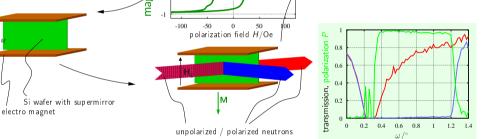

Preparation of the remanent polarizers by magnetron sputtering

Supermirror _

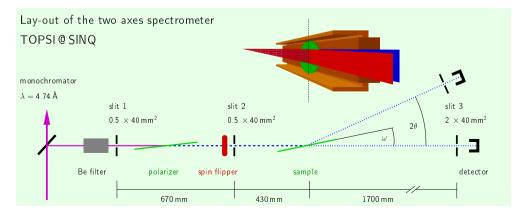
multilayer: supermirror. causes 'Bragg peaks'


stack of multilayers: overlapping 'Bragg peaks' 'multilayer' with layer

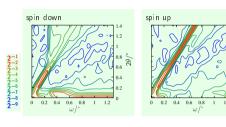
thickness gradient



Acknowledgments


These results were obtained within the project TECHNI of the EU program IHP / Networks with financial support from the BBW Switzerland (No. 99.0593)

Application of a remanent polarizer



Set-up for transmission and reflectivity measurements

Off-specular scattering

 $\omega/2\theta$ mapping for polarized neutrons, $\mathbf{M} \parallel \mathbf{H}_{\alpha}$ to 'find' the lost intensity for $0.3^{\circ} < \omega < 0.6^{\circ}$

transmission: $2\theta = 0$ reflection $2\theta = 2\omega$

Results

All shown experimental data were obtained from a Fe/Si supermirror of 299 layers (m = 2.5) on Si

The polarization

$$P = rac{majority - minority}{majority + minority}$$

was calculated without any corrections

The polarizer can be switched by applying short magnetic field pulses.

During the measurement no field is required.

The *obtained* neutron spin filter:

 high efficiency low absorption $P = 96\% \rightarrow 99\%$ $10\% \rightarrow 60\%$

compact

 $0.18 < q / nm^{-1} < 0.55$ • large bandwidth

switchable

switching field $< 200\,O_e$

• no magnetic fields

coercitive field > 30 Oe

non-deflecting