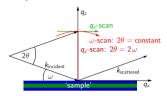
Jochen Stahn, Christof Niedermayer, Justin Hoppler, Thomas Gutberlet

Laboratorium für Neutronenstreuung, ETH Zürich & PSI MPI für Festkörperforschung. Stuttgart Jacques Chakhalian, Christian Bernhard

specular reflectivity

0.02

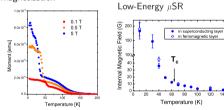
0.04


 $q_x (10^{-4} \text{ Å}^{-1})$

Bragg peak intensities

Magnetic induction in perovskite HTSC / FM multilayers

Intro


The magnetic field profile at the interface of the ferromagnet La_{2/2}Ca_{1/2}MnO₂ (LCMO) and the superconduct0r YBa₂Cu₂O₇ (YBCO) in superlattices has been studied by specular $(q_z$ -scan) and off-specular $(\omega$ -scan) neutron reflectometry.

- q_z is normal to the sample surface, in-plane structure is averaged over several μm
- q_{ν} probes lateral inhomogeniouties (interface roughness and domains).

These investigations were motivated by Low-Energy µSR and bulk magnetization measurements which showed an unexpected magnetic behaviour below T_c :

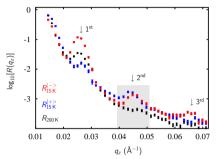
magnetisation

The depth-resolution of these methods (if any) is not sufficient to allocate the increased magnetic flux to certain regions.

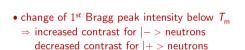
Neutron Reflectometry _____

Unpolarised neutron-reflectometry Morpheus@SINQ [YBCO(100 Å)/LCMO(100 Å)]₇

 q_z (Å⁻¹)

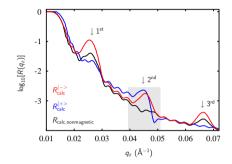

 $q_x (10^{-4} \text{ Å}^{-1})$

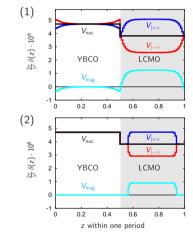
 $I(q_z, T)$ map for the 1st and 2nd Bragg peaks


1st Bragg peak

instrument sample cooled and measured in $H = 100 \, \text{Oe}$

Specular reflectivity for polarised neutrons ADAM@ILL [YBCO(150 Å)/LCMO(140 Å)]₆


Suitable model potentials:


- \Rightarrow B has an other z-dependence than V^{nuclear}
- ullet $I_{
 m specular} \propto I_{integrated}$ for $T > T_{
 m c}$
- $I_{\text{specular}} < I_{\text{integrated}}$ for $T < T_c$
- exchange bias

Simulation

Calculated with the computer code EDXR of P. Mikulík.

- 2^{nd} Bragg peak fobidden by symmetry of V^{nuclear} (see simulations)
- ⇒ no detecatble magnetic roughness
- ⇒ increasing magnetic roughness
- ⇒ AFM layers must be present at the interface

Summary

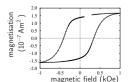
150

T (K)

200

100

Evidence for a characteristic difference between the structural and magnetic depth profiles is obtained from the occurrence of a structurally forbidden Bragg peak in the FM state and the anomalous temperature dependence of the intensity of the first Bragg peak.


The comparison with simulated spectra allows us to identify two possible magnetization profiles:

- (1) A sizable magnetic moment develops within the SC layer that is antiparallel to the one in the FM laver.
- (2) A significant "dead" region in the FM layer that has no net magnetic moment.

Both are compatible with exchange bias. Scenario (1) is supported by an anomalous SCinduced enhancement of the off-specular reflection which testifies for a strong mutual interaction of SC and FM order parameters and may be the signature of a spatially inhomogeneous SC/FM interface state.

Magnetometry

SQUID measurement by F. Treubner, Uni. Konstanz - thanks!

[YBCO(100 Å)/LCMO(100 Å)]₇

 $T=5\,\mathrm{K}$ Cooled in $H = 100 \, \mathrm{Oe}$ exchange-bias field: $H_{\rm a} = -600 \, \rm Ge$