# — JRA3 neutron optics & phase space transformer partner & tasks

TUM Germany P. Böni CEA-LLB F. Ott France HMI T. Krist Germany PSI Switzerland J. Stahn **BNC-RISP** J. Füzi Hungary INFM Italy F. Sacchetti



- T1 honeycomb lenses, multi beam, beam conditioning for SANS, solid state devices
  TUM, LLB, PSI, HMI, BNC, INFM
- T2 **focusing devices** (not solid state), more homogenous phase space, optimum transport **TUM**, PSI
- T3 diffuse scattering, **new sputtering techniques**, reduce roughness, stress
  TUM, **PSI**, HMI, BNC
- T4 phase space transformation, UCN, thermal neutrons by moving monochromators



### multibeam collimation

set-up

F. Ott, LLB

small angle scattering with a focused bundle of collimated beams



set-up on TPA: collimation length 2.85 m
entrance pinhole 1.31 mm
exit pinhole 0.91 mm
masks 13

min. between 2 pinholes 0.4 mm

pinholes / masks 400

4 sets of masks / position (3 detector lengthes + 1 multislit) for  $q_{\rm min}=2.10^{-4}\,{\rm \AA}^{-1}$  at 14 Å, sample–detector distance of 6 m



masks:

<sup>6</sup>Li powder in epoxy, mechanically machined, aligned with laser gravity correction taken into account



sample:  $1\,\mu\mathrm{m}$  latex spheres,  $\Delta\lambda/\lambda=30\%$ 

Multibeam work with gain  $\propto$  number of pinholes Simulation tools proof to be useful for the design



sample: porous alumina

Multislit with gain  $\approx$ 50 compared to multibeam (but need for advanced data treatment)

implementation of multibeam/multislit technique for TPA:

- number of useful pinholes decreases faster than flux increases when distance increases
- flux optimum not for longest collimation length

(as known for simple collimation)

- allows components insertion inside the collimator
- (e.g. monochromator for smaller overall spectrometer length)

array of confocal tubes, coated with an absorber

F. Saccetti, INFM

final device:
700 mm long
focal point 2 m behind device
hole diameter 6 mm (exit)
material Al:Mg (2%)
coating: <sup>10</sup>Be

assembled honeycomp collimator



view against a light source



image of a  $20 \times 20 \,\mathrm{mm}^2$  neutron beam at the exit



a 2 m long device with 0.4° divergence is installed at BRISP at ILL

#### solid state lens

6

#### T. Krist, HMI

focusing in 1 direction



 $2\times95\times150~\mu\mathrm{m}$  bended Silicon Wafer

- -m=2 supermirror coating
- focus distance: 171 mm





accepted beam: 30 mm high

focal point: 2.4 mm high

30 mm behind lens

gain: 5.6

P. Böni, S. Mühlbauer, M. Stadlbauer, TUM

J. Stahn, U. Filges, M. Ay, PSI







bi-elliptic guide scaled 1:10

2 m long

entrance:  $4 \times 8 \,\mathrm{mm}^2$ 

maximum dimensions:  $8 \times 16 \,\mathrm{mm}^2$ 

measured on Morpheus at SINQ MIRA at FRM II





#### idea:

use the end-sections of the test device to

focus the beam

to a tiny sample in a pressure cell

- defocus the scattered beam

to get a better resolution on the detector

tested on PANDA at FRM II result:





first bi-elliptical neutron guide

for HRPD at ISIS

 $\begin{array}{l} \text{length} = 100\,\text{m} \\ \text{operational since } 11.2007 \end{array}$ 

measured gain: 10 to 100 (depending on  $\lambda$ , relative to old guide)



Photos Courtesy ISIS - Science and Technology Facilities Council, UK







— JRA3 neutron optics & phase space transformer blured interfaces

### complex multilayers

J. Stahn, M. Schneider, PSI

P. Böni, TUM

attempt to create a sinusoidal density profile by

- deposition of thin films
- subsequent annealing to get interdiffustion

TEM image of an as-deposited multilayer

accept a non-sharp profile step but with low roughness

- intermediate layers
- controlled interdiffusion



reflectivity of the annealed multilayer compared to the calculated multi-bilayer

problem:

annealing leads to grain-formation

and thus to rough interfaces

but:

the as-depositded film shows no higher order reflections!

#### aim:

starting from the quasi-sinusoidal profile reduce number of layers and still suppress higher orders

#### example:

suppression of orders 2, 3 and 4 is possible with 6 layers per period with (approximate) thickness rations 1:7:1:1:7:1





reflectivity of a Ni-Ti-multilayer, period: 27 nm, 6 sublayers/period, 10 repetitions

a long-wavelength filter of this type is used on the neutron reflectometer Narziss, SINQ

discrete layers allow for the application of the principle for polarising monochromators

conventional supermirror coatings cover a *large* angular / q range

but reflectivity decays with q

if the *necessary* q range varies spacially

one can skip the needless layers (better: periods).

⇒ higher reflectivity of the coating

example:

focusing element (parabula-branch) for a wavelength band  $\lambda = 4.7\,\text{\AA} \pm 10\%$ 



10

## lateral grading — measurements



instrument: Morpheus at SINQ, PSI

$$\lambda = 4.5 \dots 5 \, \text{Å}$$

various tilt angles

various distances *l* (optimum 250 mm)

a 8 mm wide beam is focused to  $<\!0.8\,\text{mm}$  with a yeald of almost 100%





## Phase Space Transformer: UCN ⇒ CN





## Phase Space Transformer: UCN ⇒ CN

- Device for the acceleration of ultra cold neutrons (UCN) into monochromatic cold neutrons by taking advantage of the *high phase space* density of UCN at next-generation sources.
- Principle: up-scattering of UCN on one or several rotating crystals using the Doppler-effect to match the Bragg condition.
- Final experiments 2008 at the ILL PF2-UCN source were successfully carried out proving that the principle of PST works as predicted in detailed MC simulations.
- ■PhD Thesis of S. Mayer ATI



# — JRA3 neutron optics & phase space transformer partner & tasks

TUM Germany P. Böni CEA-LLB F. Ott France HMI T. Krist Germany PSI Switzerland J. Stahn **BNC-RISP** J. Füzi Hungary INFM Italy F. Sacchetti



- T1 honeycomb lenses, multi beam, beam conditioning for SANS, solid state devices
  TUM, LLB, PSI, HMI, BNC, INFM
- T2 **focusing devices** (not solid state), more homogenous phase space, optimum transport **TUM**, PSI
- T3 diffuse scattering, **new sputtering techniques**, reduce roughness, stress
  TUM, **PSI**, HMI, BNC
- T4 phase space transformation, UCN, thermal neutrons by moving monochromators