

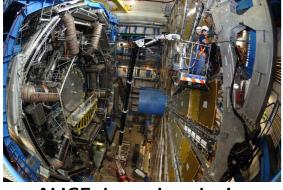
Gavin Salam, CERN

PSI Summer School Exothiggs, Zuoz, August 2016

The LHC and its Experiments LHC - B ~16.5 mi circumference, ~300 feet underground 1232 superconducting twin-bore Dipoles (49 ft, 35 t each) • Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9K

ATLAS: general purpose CMS: general purpose

• Beam intensity 0.5 A (2.2 10⁻⁶ loss causes quench), 362 MJ stored energy



ALICE: heavy-ion physics

LHCb: B-physics

+ TOTEM, LHCf

LHC — TWO ROLES — A DISCOVERY MACHINE AND A PRECISION MACHINE

Today

- > 20 fb⁻¹ at 8 TeV
- > 13 fb⁻¹ at 13 TeV

Future

- > 2018: 100 fb⁻¹ @ 13 TeV
- 2023: 300 fb⁻¹ @ 1? TeV
- > 2035: 3000 fb⁻¹ @ 14 TeV

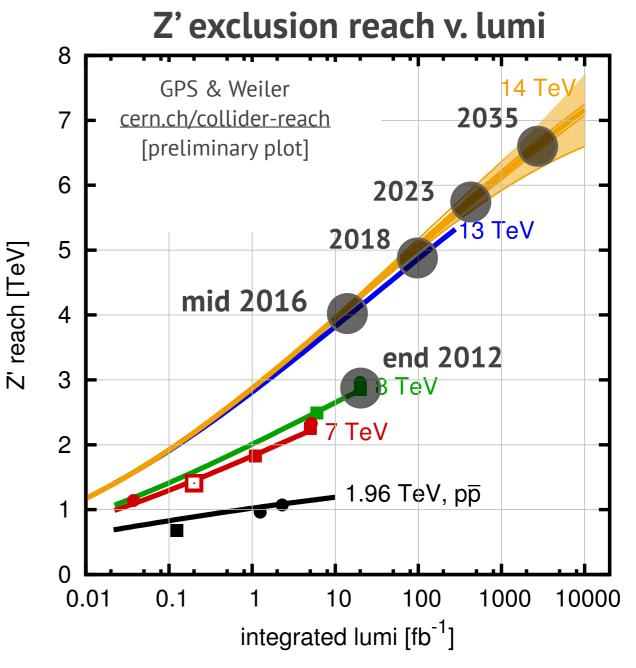
 $1 \text{ fb}^{-1} = 10^{14} \text{ collisions}$

Increase in luminosity brings discovery reach and precision

The LHC and its Experiments CERN Point 2 LHC - B ~16.5 mi circumference, ~300 feet underground • 1232 superconducting twin-bore Dipoles (49 ft, 35 t each) • Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9K Beam intensity 0.5 A (2.2 10⁻⁶ loss causes quench), 362 MJ stored energy

ATLAS: general purpose ALICE: heavy-ion physics CMS: general purpose LHCb: B-physics + TOTEM, LHCf

LHC — TWO ROLES — A DISCOVERY MACHINE AND A PRECISION MACHINE



Increase in luminosity brings discovery reach and precision

The LHC and its Experiments CERN Point 2 LHC - B ~16.5 mi circumference, ~300 feet underground • 1232 superconducting twin-bore Dipoles (49 ft, 35 t each) • Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9K • Beam intensity 0.5 A (2.2 10⁻⁶ loss causes quench), 362 MJ stored energy **ATLAS:** general purpose CMS: general purpose

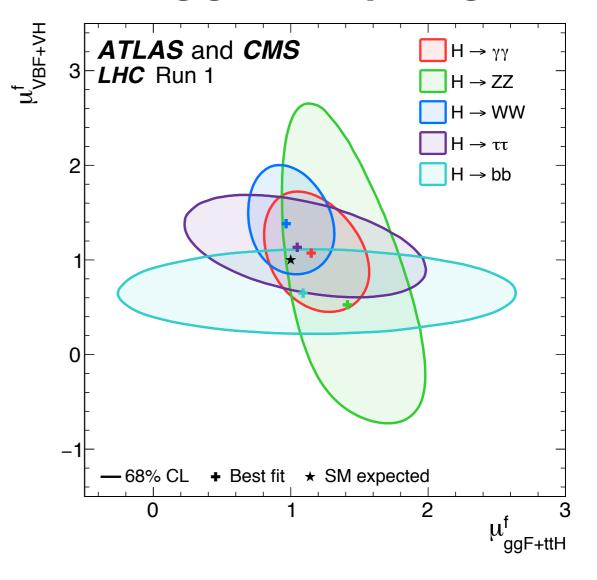
LHCb: B-physics

+ TOTEM, LHCf

ALICE: heavy-ion physics

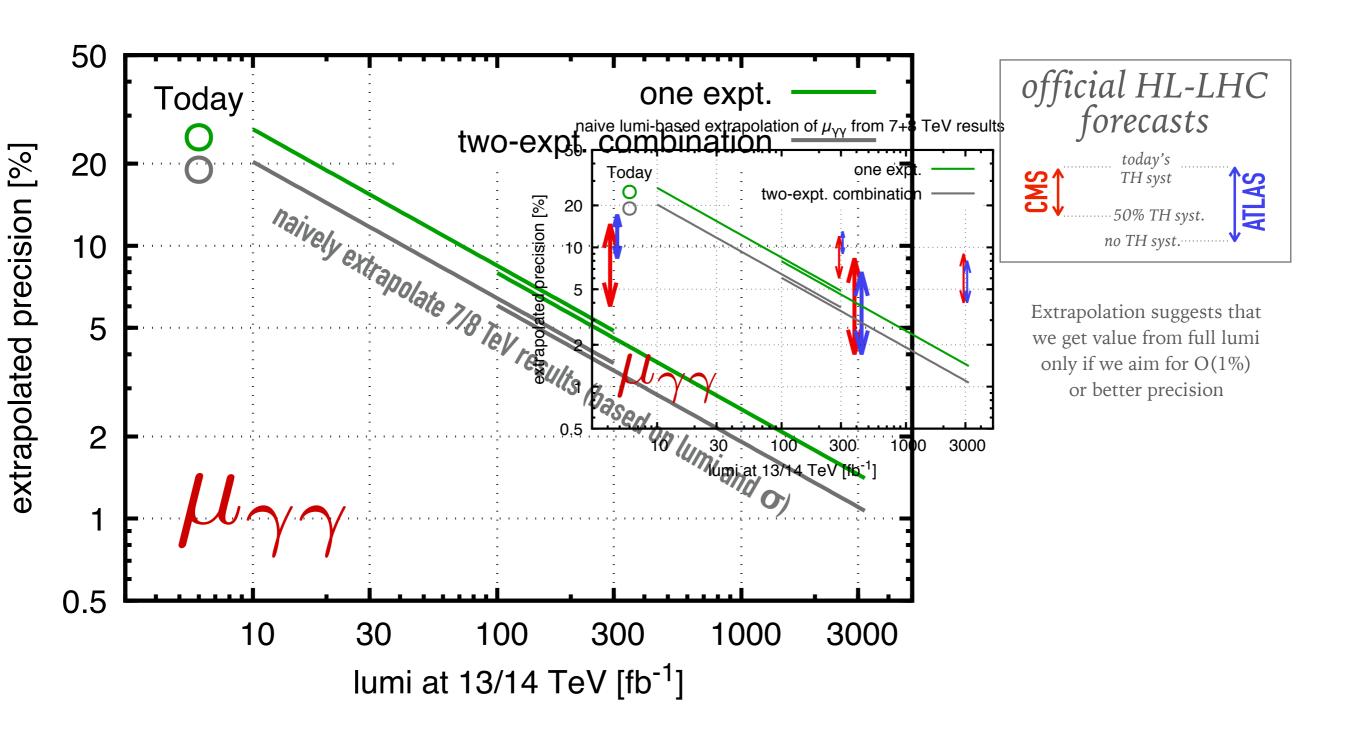
LHC — TWO ROLES — A DISCOVERY MACHINE AND A PRECISION MACHINE

Higgs couplings



Increase in luminosity brings discovery reach and precision

LONG-TERM HIGGS PRECISION?



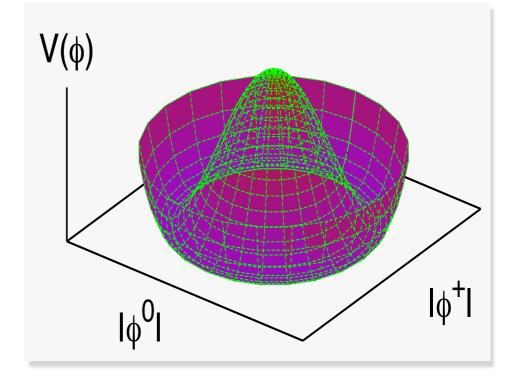
Naive extrapolation suggests LHC has long-term potential to do Higgs physics at 1% accuracy

THE HIGGS SECTOR

The theory is old (1960s-70s).

But the particle and it's theory are unlike anything we've seen in nature.

- ightharpoonup A fundamental scalar ϕ , i.e. spin 0 (all other particles are spin 1 or 1/2)
- ➤ A potential $V(\phi) \sim -\mu^2 (\phi \phi^{\dagger}) + \lambda (\phi \phi^{\dagger})^2$, which until now was limited to being theorists' "toy model" (ϕ^4)
- > "Yukawa" interactions responsible for fermion masses, $y_i \phi \bar{\psi} \psi$, with couplings (y_i) spanning 5 orders of magnitude

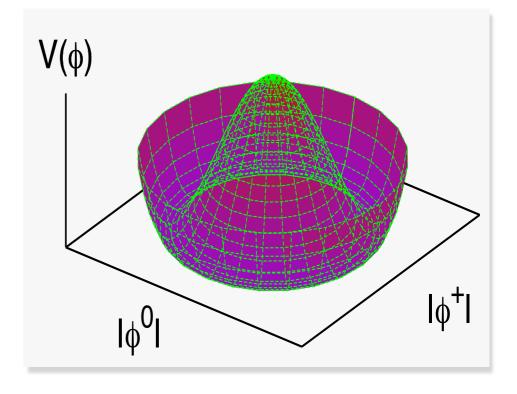


THE HIGGS SECTOR

The theory is old (1960s-70s).

But the particle and it's theory are unlike anything we've seen in nature.

- ightharpoonup A fundamental scalar ϕ , i.e. spin 0 (all other particles are spin 1 or 1/2)
- ► A potential $V(φ) \sim -μ^2(φφ^\dagger) + λ(φφ^\dagger)^2$, which until now was limited to being theorists' "toy model" $(φ^4)$
- > "Yukawa" interactions responsible for fermion masses, $y_i \phi \bar{\psi} \psi$, with couplings (y_i) spanning 5 orders of magnitude



Higgs sector needs stress-testing

Is Higgs fundamental or composite? If fundamental, is it "minimal"? Is it really ϕ ? Are Yukawa couplings responsible for all fermion masses?

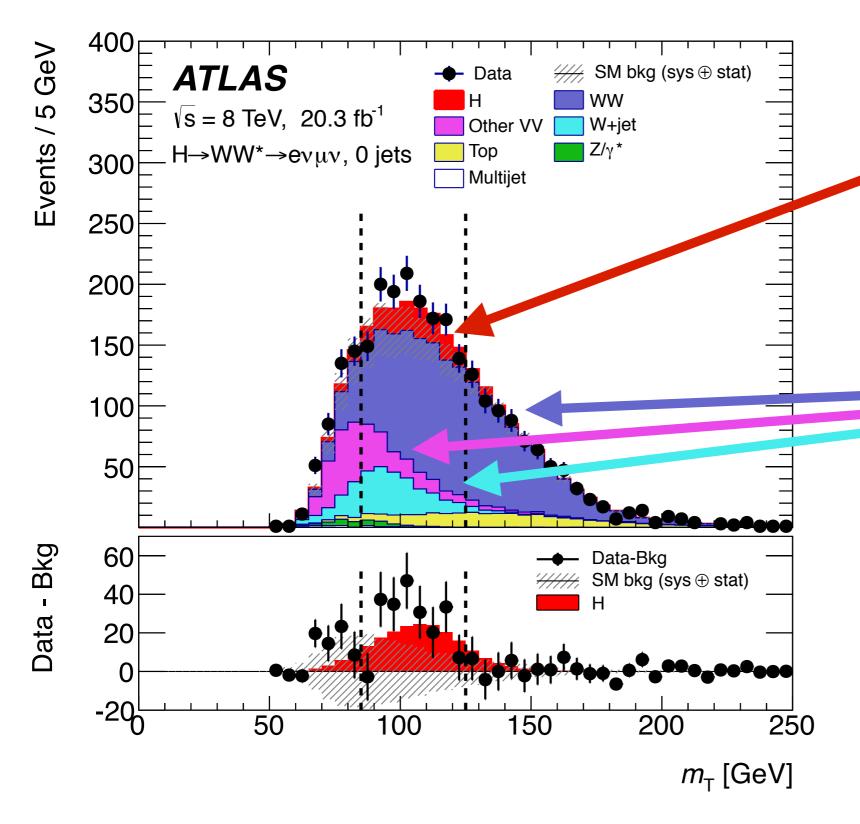
ATLAS H \rightarrow WW* ANALYSIS [1604.02997]

3 Signal and background models

The ggF and VBF production modes for $H \to WW^*$ are modelled at next-to-leading order (NLO) in the strong coupling α_S with the Powneg MC generator [22–25], interfaced with Pythia8 [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the Pythia8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV, which is close to the measured value. The Powneg ggF model takes into account finite quark masses and a running-width Breit-Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson p_T distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HREs 2.1 program [30] Events with ≥ 2 jets are further reweighted to reproduce the p_T^H spectrum predicted by the NLO Powneg simulation of Higgs boson production in association with two jets (H + 2 jets) [31]. Interference with continuum WW production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model.

Jets are reconstructed from topological clusters of calorimeter cells [50–52] using the anti- k_t algorithm with a radius parameter of R = 0.4 [53]. Jet energies are corrected for the effects of calorimeter non-

ATLAS H \rightarrow WW* ANALYSIS [1604.02997]



That whole paragraph was just for the red part of this distribution (the Higgs signal).

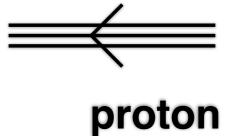
Complexity of modelling each of the backgrounds is comparable

(a)
$$N_{\text{jet}} = 0$$

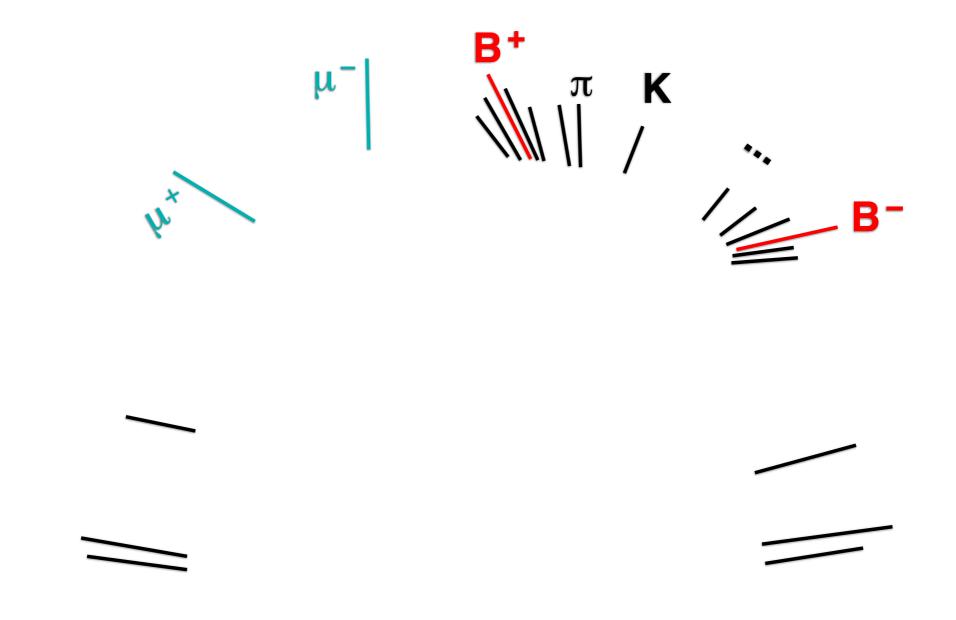
AIMS OF THESE LECTURES

- ➤ Give you basic understanding of the "jargon" of theoretical collider prediction methods and inputs
- ➤ Give you insight into the power & limitations of different techniques for making collider predictions

A proton-proton collision: INITIAL STATE



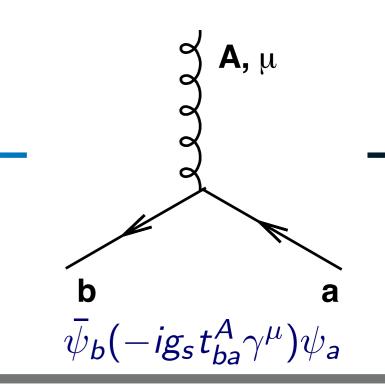
A proton-proton collision: FINAL STATE



(actual final-state multiplicity ~ several hundred hadrons)

Quarks — 3 colours:
$$\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$

Quark part of Lagrangian:



$$\mathcal{L}_{q} = \bar{\psi}_{a} (i \gamma^{\mu} \partial_{\mu} \delta_{ab} - g_{s} \gamma^{\mu} t_{ab}^{C} \mathcal{A}_{\mu}^{C} - m) \psi_{b}$$

SU(3) local gauge symmetry $\leftrightarrow 8 \ (= 3^2 - 1)$ generators $t_{ab}^1 \dots t_{ab}^8$ corresponding to 8 gluons $\mathcal{A}_{\mu}^1 \dots \mathcal{A}_{\mu}^8$.

A representation is: $t^A = \frac{1}{2}\lambda^A$,

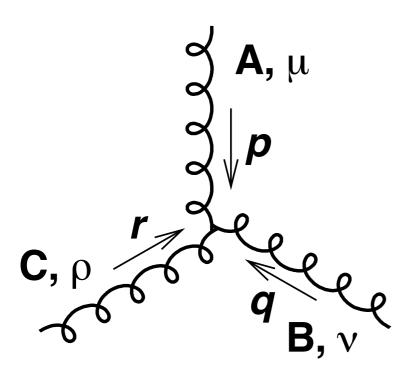
$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

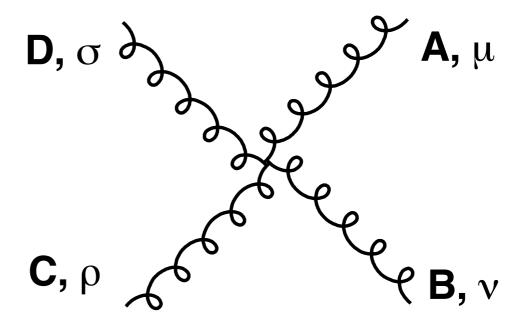
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{pmatrix},$$

Field tensor:
$$F_{\mu\nu}^A = \partial_{\mu}A_{\nu}^A - \partial_{\nu}A_{\nu}^A - g_s f_{ABC}A_{\mu}^BA_{\nu}^C$$
 $[t^A, t^B] = if_{ABC}t^C$

 f_{ABC} are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was ϵ^{ABC}). Needed for gauge invariance of gluon part of Lagrangian:

$$\mathcal{L}_{G}=-rac{1}{4}F_{A}^{\mu
u}F^{A\,\mu
u}$$





The only complete solution uses lattice QCD

- put all quark & gluon fields on a 4d lattice (NB: imaginary time)
- Figure out most likely configurations (Monte Carlo sampling)

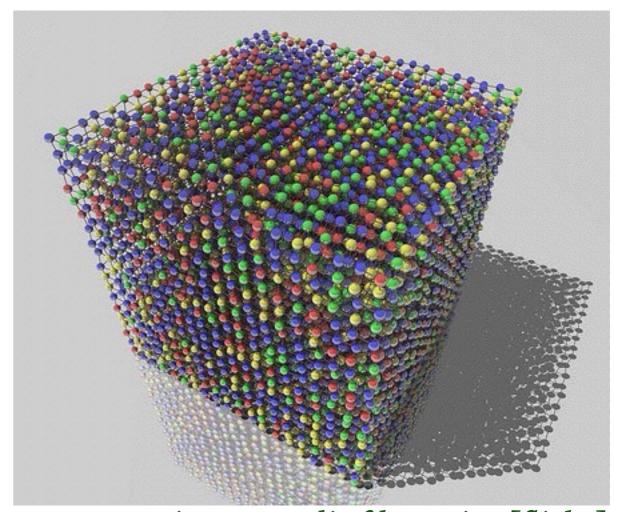
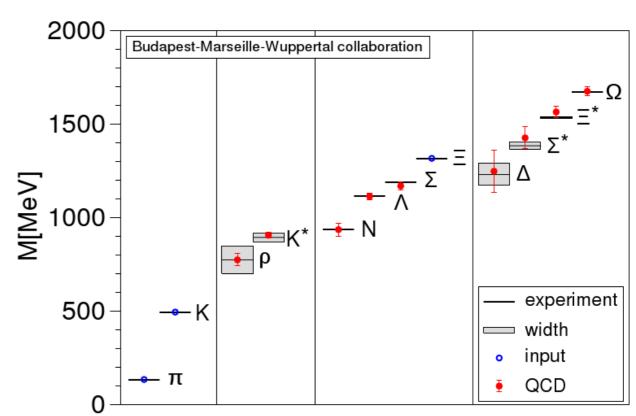


image credit fdecomite [flickr]

The only complete solution uses lattice QCD

- put all quark & gluon fields on a 4d lattice (NB: imaginary time)
- Figure out most likely configurations (Monte Carlo sampling)

hadron spectrum from lattice QCD

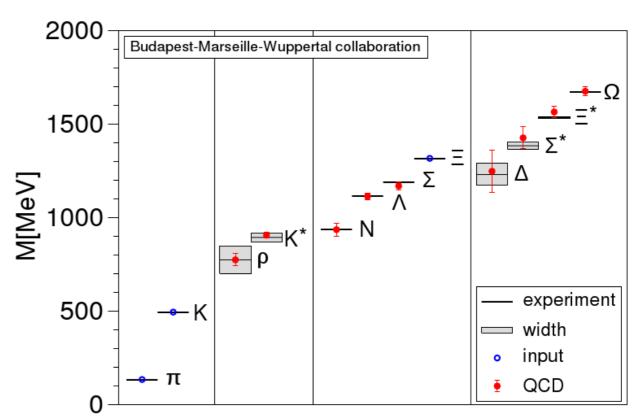


Durr et al, arXiv:0906.3599

The only complete solution uses lattice QCD

- put all quark & gluon fields on a 4d lattice (NB: imaginary time)
- Figure out most likely configurations (Monte Carlo sampling)

hadron spectrum from lattice QCD



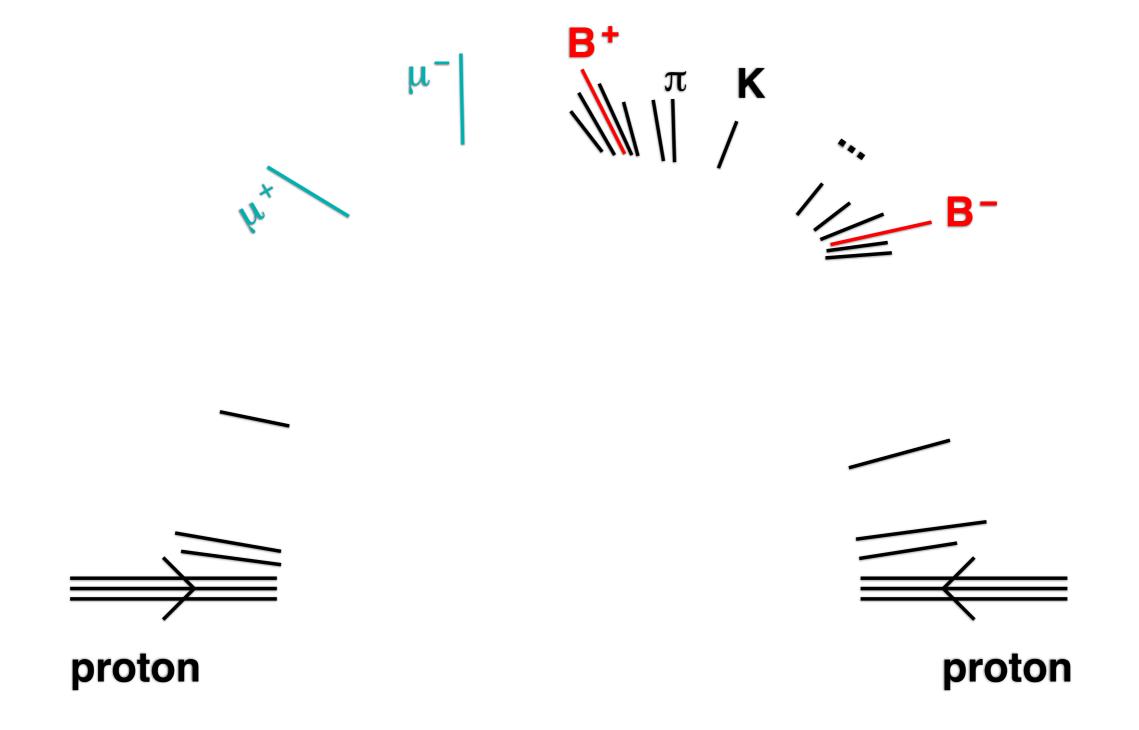
Durr et al, arXiv:0906.3599

For LHC reactions, lattice would have to

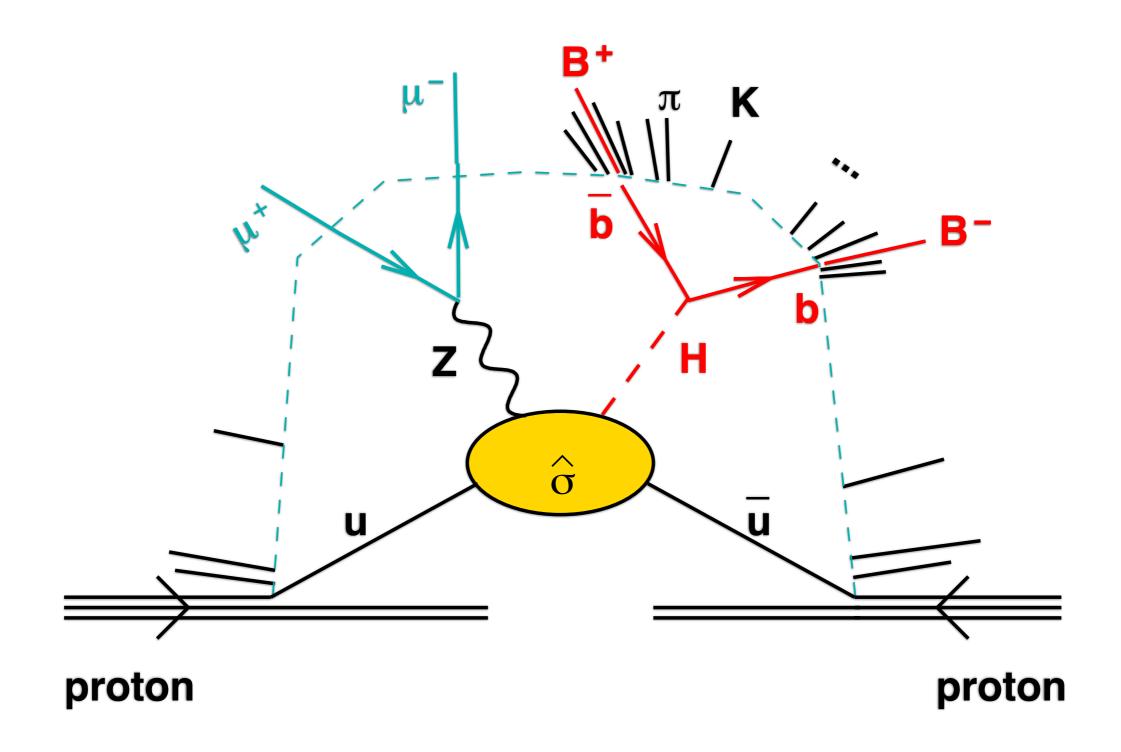
- ➤ Resolve smallest length scales (2 TeV ~ 10⁻⁴ fm)
- Contain whole reaction (pion formed on timescale of 1fm, with boost of 10000 — i.e. 10⁴ fm)

That implies 10⁸ nodes in each dimension, i.e. 10³² nodes — unrealistic

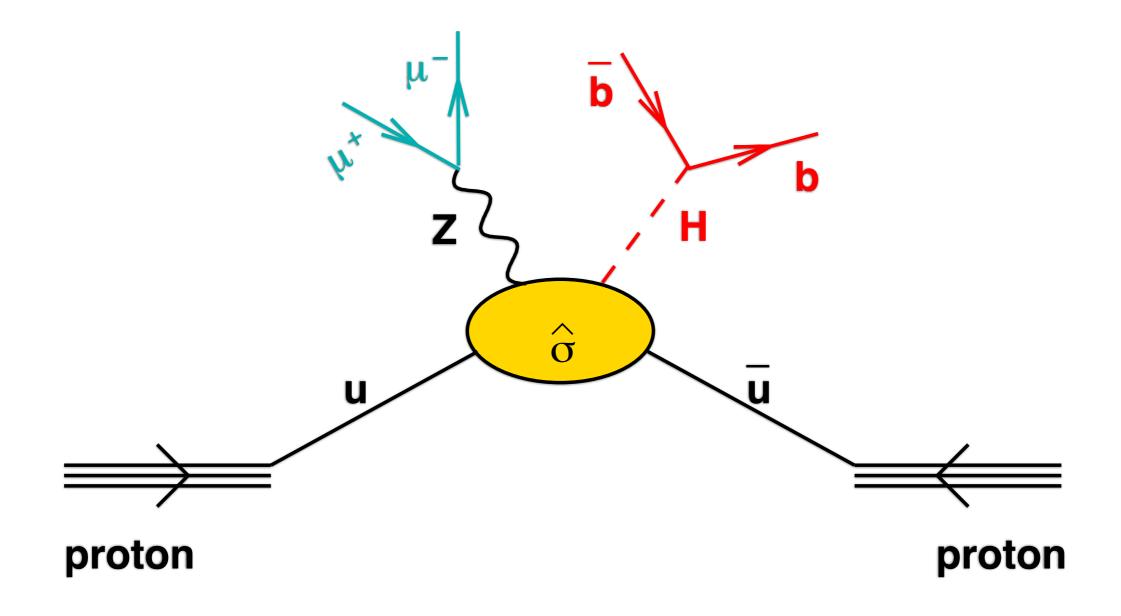
A proton-proton collision: FILLING IN THE PICTURE



A proton-proton collision: FILLING IN THE PICTURE

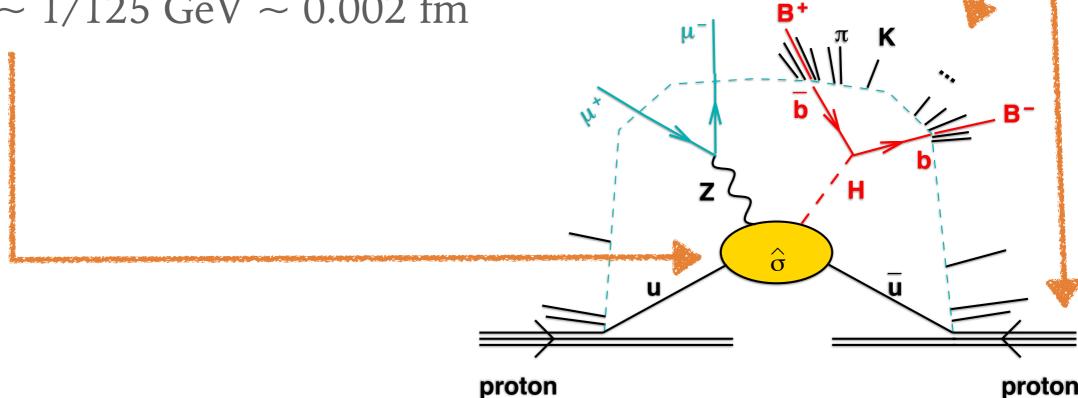


A proton-proton collision: SIMPLIFYING IN THE PICTURE



➤ Proton's dynamics occurs on timescale O(1 fm)
Final-state hadron dynamics occurs on timescale O(1fm)

➤ Production of Higgs, Z (and other "hard processes") occurs on timescale 1/M_H ~ 1/125 GeV ~ 0.002 fm



That means we can separate — "factorise" — the hard process, i.e. treat it as independent from all the hadronic dynamics

WHY IS SIMPLIFICATION "ALLOWED"?

KEY IDEA #2

SHORT-DISTANCE QCD CORRECTIONS ARE PERTURBATIVE

- ➤ On timescales $1/M_H \sim 1/125$ GeV ~ 0.002 fm you can take advantage of asymptotic freedom
- ➤ i.e. you can write results in terms of an expansion in the (not so) strong coupling constant $a_s(125 \text{ GeV}) \sim 0.11$

$$\hat{\sigma} = \hat{\sigma}_0 (1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots)$$
(Leading Order)

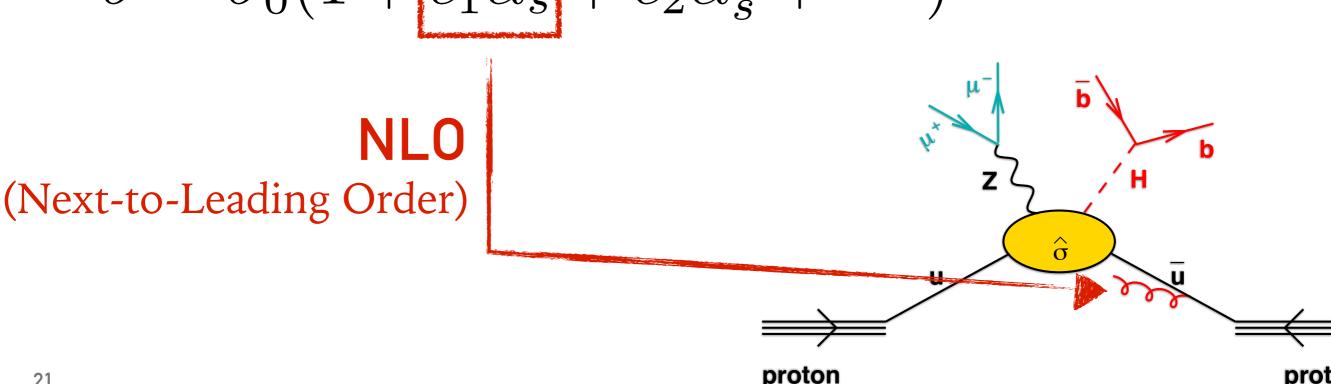
WHY IS SIMPLIFICATION "ALLOWED"?

KEY IDEA #2

SHORT-DISTANCE QCD CORRECTIONS ARE PERTURBATIVE

- \blacktriangleright On timescales $1/M_H \sim 1/125$ GeV ~ 0.002 fm you can take advantage of asymptotic freedom
- i.e. you can write results in terms of an expansion in the (not so) strong coupling constant $a_s(125 \text{ GeV}) \sim 0.11$

$$\hat{\sigma} = \hat{\sigma}_0 (1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots)$$



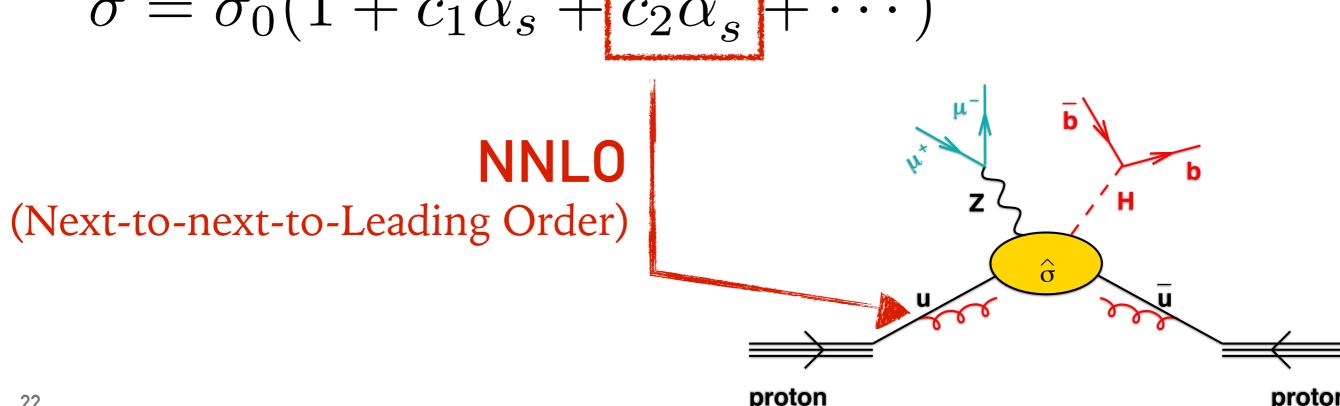
WHY IS SIMPLIFICATION "ALLOWED"?

KEY IDEA #2

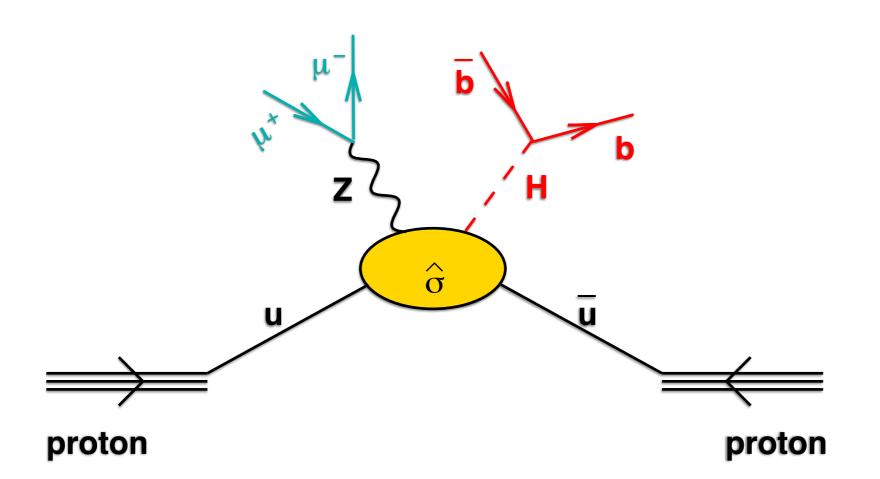
SHORT-DISTANCE QCD CORRECTIONS ARE PERTURBATIVE

- \blacktriangleright On timescales $1/M_H \sim 1/125$ GeV ~ 0.002 fm you can take advantage of asymptotic freedom
- i.e. you can write results in terms of an expansion in the (not so) strong coupling constant $a_s(125 \text{ GeV}) \sim 0.11$

$$\hat{\sigma} = \hat{\sigma}_0 (1 + c_1 \alpha_s + c_2 \alpha_s^2 + \cdots)$$



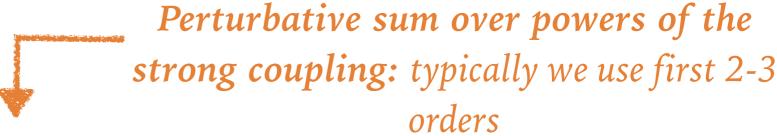
$$\sigma(h_{1}h_{2} \to ZH + X) = \sum_{n=0}^{\infty} \alpha_{s}^{n} \left(\mu_{R}^{2}\right) \sum_{i,j} \int dx_{1} dx_{2} f_{i/h_{1}} \left(x_{1}, \mu_{F}^{2}\right) f_{j/h_{2}} \left(x_{2}, \mu_{F}^{2}\right) \times \hat{\sigma}_{ij \to ZH + X}^{(n)} \left(x_{1}x_{2}s, \mu_{R}^{2}, \mu_{F}^{2}\right) + \mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),$$



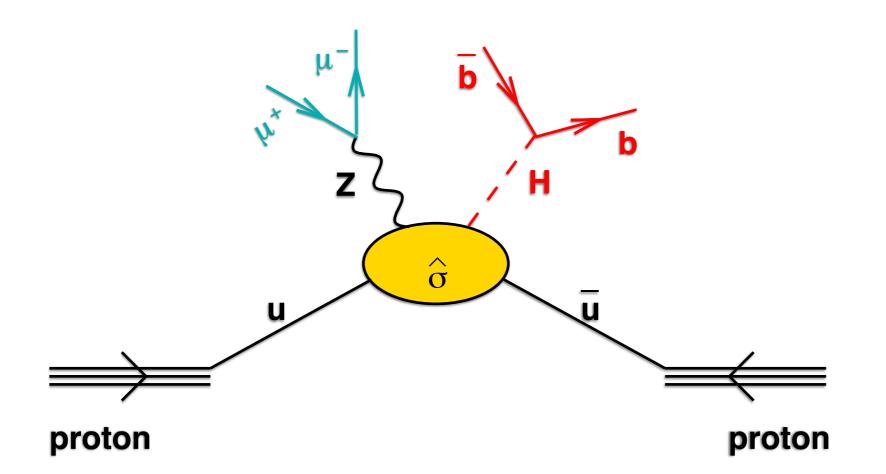


$$\sigma\left(h_{1}h_{2}\rightarrow ZH+X\right) = \sum_{n=0}^{\infty}\alpha_{s}^{n}\left(\mu_{R}^{2}\right)\sum_{i,j}\int dx_{1}dx_{2}\frac{f_{i/h_{1}}\left(x_{1},\mu_{F}^{2}\right)}{f_{i/h_{1}}\left(x_{1},\mu_{F}^{2}\right)}f_{j/h_{2}}\left(x_{2},\mu_{F}^{2}\right) \\ \times \hat{\sigma}_{ij\rightarrow ZH+X}^{(n)}\left(x_{1}x_{2}s,\mu_{R}^{2},\mu_{F}^{2}\right) + \mathcal{O}\left(\frac{A^{2}}{M_{W}^{4}}\right),$$

$$Parton\ distribution\ function\ (PDF): e.g.\ number\ of\ up\ quarks\ carrying\ fraction\ x_{1}\ of\ proton's\ momentum$$



$$\sigma(h_{1}h_{2} \to ZH + X) = \sum_{n=0}^{\infty} \alpha_{s}^{n} \left(\mu_{R}^{2}\right) \sum_{i,j} \int dx_{1} dx_{2} f_{i/h_{1}} \left(x_{1}, \mu_{F}^{2}\right) f_{j/h_{2}} \left(x_{2}, \mu_{F}^{2}\right) \times \hat{\sigma}_{ij \to ZH + X}^{(n)} \left(x_{1}x_{2}s, \mu_{R}^{2}, \mu_{F}^{2}\right) + \mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),$$



$$\sigma\left(h_{1}h_{2}\rightarrow ZH+X\right) = \sum_{n=0}^{\infty}\alpha_{s}^{n}\left(\mu_{R}^{2}\right)\sum_{i,j}\int dx_{1}dx_{2}\,f_{i/h_{1}}\left(x_{1},\mu_{F}^{2}\right)f_{j/h_{2}}\left(x_{2},\mu_{F}^{2}\right)$$

$$\times \frac{\hat{\sigma}_{ij\rightarrow ZH+X}^{(n)}\left(x_{1}x_{2}s,\mu_{R}^{2},\mu_{F}^{2}\right)}{\mathbf{b}}+\mathcal{O}\left(\frac{A^{2}}{M_{W}^{4}}\right),$$

$$At \ each \ perturbative \ order \ n$$

$$we \ have \ a \ specific \ "hard matrix \ element" \ (sometimes \ several \ for \ different \ subprocesses)$$

$$\hat{\sigma}$$

$$\bar{\mathbf{proton}}$$

$$\sigma\left(h_{1}h_{2}\rightarrow ZH+X\right) = \sum_{n=0}^{\infty}\alpha_{s}^{n}\left(\mu_{R}^{2}\right)\sum_{i,j}\int dx_{1}dx_{2}\,f_{i/h_{1}}\left(x_{1},\mu_{F}^{2}\right)f_{j/h_{2}}\left(x_{2},\mu_{F}^{2}\right) \\ \times\hat{\sigma}_{ij\rightarrow ZH+X}^{(n)}\left(x_{1}x_{2}s,\mu_{R}^{2},\mu_{F}^{2}\right) + \mathcal{O}\left(\frac{A^{2}}{M_{W}^{4}}\right),$$

$$Additional\ corrections\ from\ non-perturbative\ effects\ (higher\ "twist",\ suppressed\ by\ powers\ of\ QCD\ scale\ (\Lambda)\ /\ hard\ scale)$$

THE STRONG COUPLING

RUNNING COUPLING

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^2) of your process.

The QCD coupling, $\alpha_s(Q^2)$, runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer & Wilczek

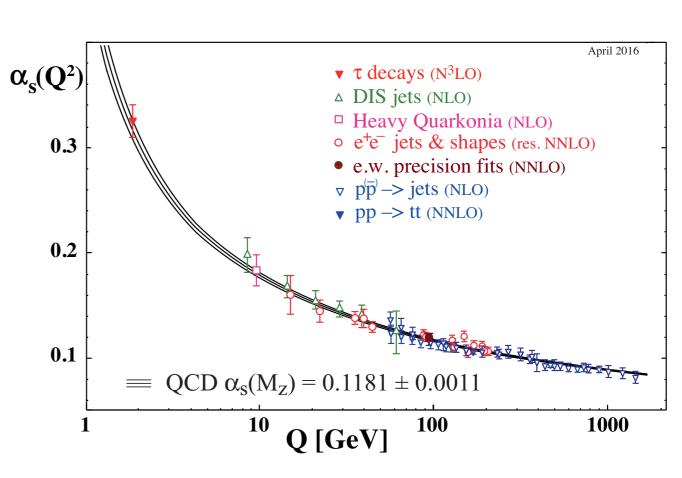
- \triangleright At high scales Q, coupling becomes small
 - quarks and gluons are almost free, interactions are weak
- At low scales, coupling becomes strong
 - ⇒quarks and gluons interact strongly confined into hadrons Perturbation theory fails.

THE STRONG COUPLING V. SCALE

Solve
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \implies \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$ GeV (aka Λ_{QCD}) is the fundamental scale of QCD, at which coupling blows up.

- Λ sets the scale for hadron masses (NB: Λ not unambiguously defined wrt higher orders)
- Perturbative calculations valid for scales $Q \gg \Lambda$.



PDG World Average: $\alpha_s(M_Z) = 0.1181 \pm 0.0011 (0.9\%)$

ι-decays Baikov **Davier** Pich **Boito** SM review HPQCD (Wilson loops) HPQCD (c-c correlators) Maltmann (Wilson loops) lattice JLQCD (Adler functions) PACS-CS (vac. pol. fctns.) ETM (ghost-gluon vertex) BBGPSV (static energy) **ABM** functions structure **BBG NNPDF MMHT** e+e-ALEPH (jets&shapes) OPAL(j&s) JADE(j&s) annihilation Dissertori (3j) JADE (3i) DW (T) Abbate (T) Gehrm. (T) Hoang | electroweak **GFitter** precision fits hadron **CMS** collider (tt cross section) 0.11 0.115 0.12 0.125 0.13

STRONG-COUPLING DETERMINATIONS

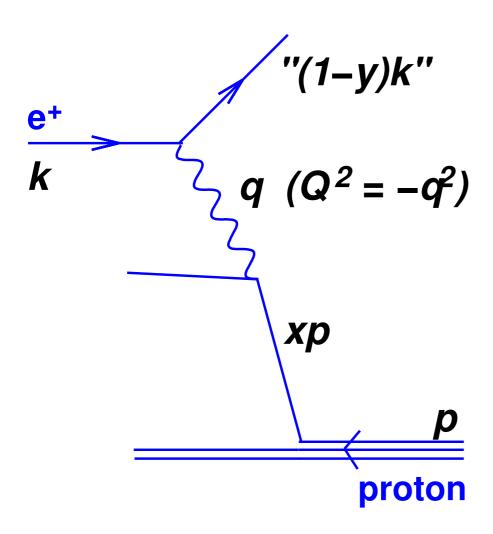
Bethke, Dissertori & GPS in PDG '16

- Most consistent set of independent determinations is from lattice
- Two best determinations are from same group (HPQCD, 1004.4285, 1408.4169) $a_s(M_Z) = 0.1183 \pm 0.0007 (0.6\%)$ [heavy-quark correlators] $a_s(M_Z) = 0.1183 \pm 0.0007 (0.6\%)$ [Wilson loops]
- Many determinations quote small uncertainties (≤1%). All are disputed!
- Some determinations quote anomalously small central values (~0.113 v. world avg. of 0.1181±0.0011). Also disputed

PARTON DISTRIBUTION FUNCTIONS (PDFs)

DEEP INELASTIC SCATTERING

Hadron-hadron is complex because of two incoming partons — so start with simpler Deep Inelastic Scattering (DIS).

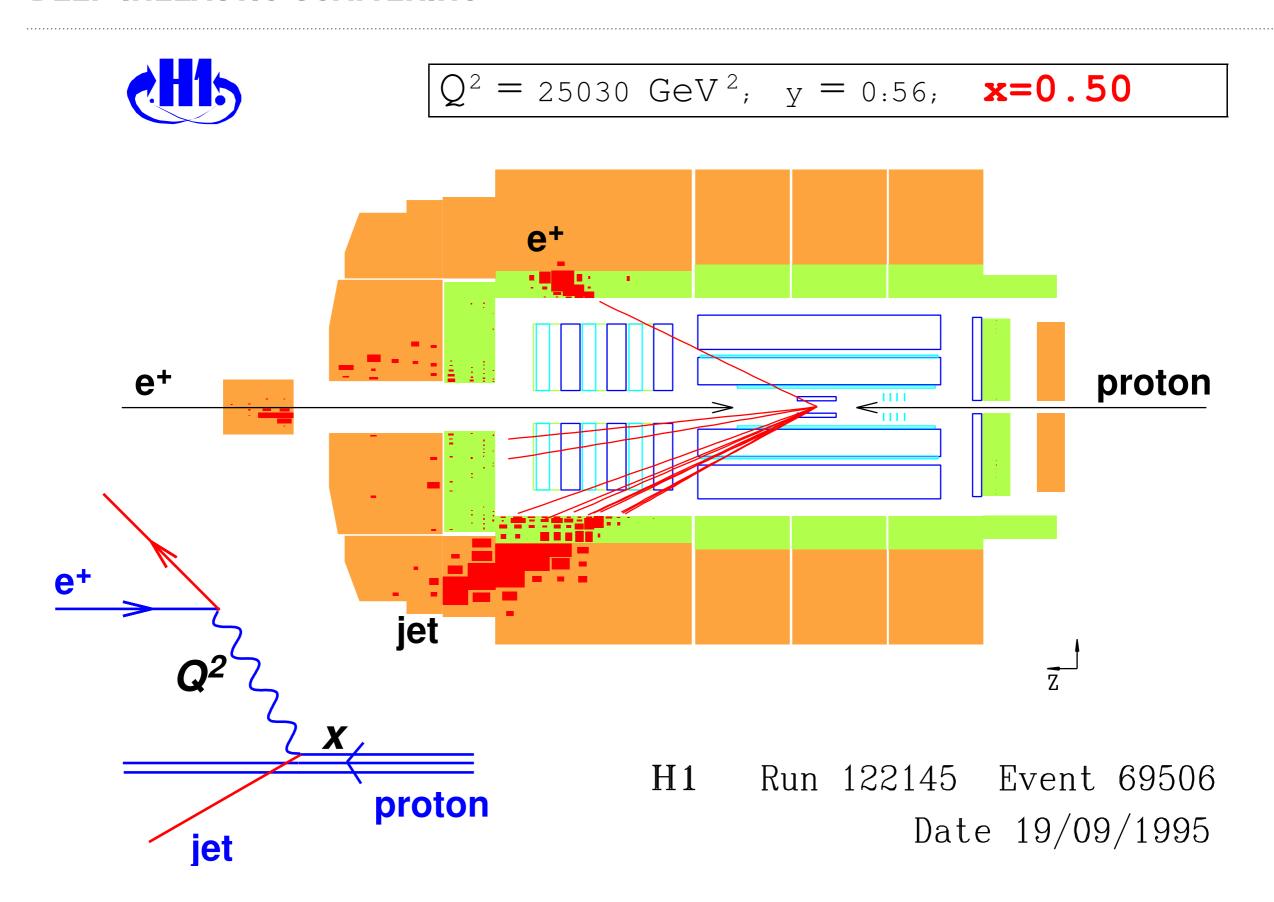


Kinematic relations:

$$x = \frac{Q^2}{2p.q};$$
 $y = \frac{p.q}{p.k};$ $Q^2 = xys$ $\sqrt{s} = \text{c.o.m. energy}$

- ▶ Q^2 = photon virtuality \leftrightarrow *transverse resolution* at which it probes proton structure
- x = longitudinal momentum fraction of struck parton in proton
- y = momentum fraction lost by electron (in proton rest frame)

DEEP INELASTIC SCATTERING



DEEP INELASTIC SCATTERING

Write DIS X-section to zeroth order in α_s ('quark parton model'):

$$\frac{d^2\sigma^{em}}{dxdQ^2} \simeq \frac{4\pi\alpha^2}{xQ^4} \left(\frac{1 + (1 - y)^2}{2} F_2^{em} + \mathcal{O}(\alpha_s) \right)$$

$$\propto F_2^{em} \qquad [structure function]$$

$$F_2 = x(e_u^2 u(x) + e_d^2 d(x)) = x\left(\frac{4}{9}u(x) + \frac{1}{9}d(x)\right)$$

[u(x), d(x)]: parton distribution functions (PDF)]

<u>NB:</u>

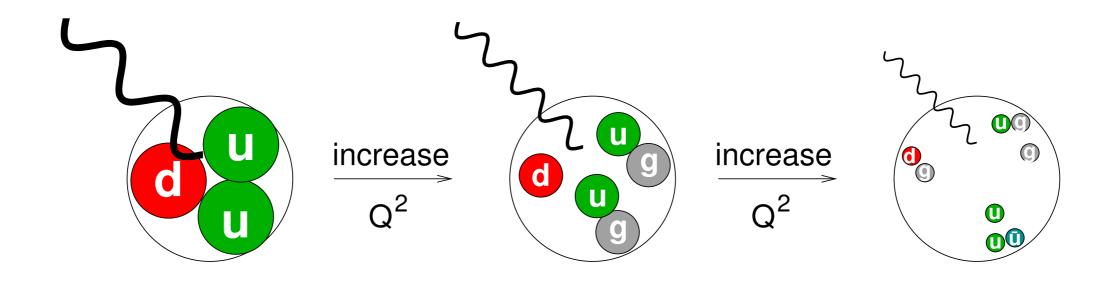
- use perturbative language for interactions of up and down quarks
- but distributions themselves have a non-perturbative origin.

PARTON DISTRIBUTION AND DGLAP

Write up-quark distribution in proton as

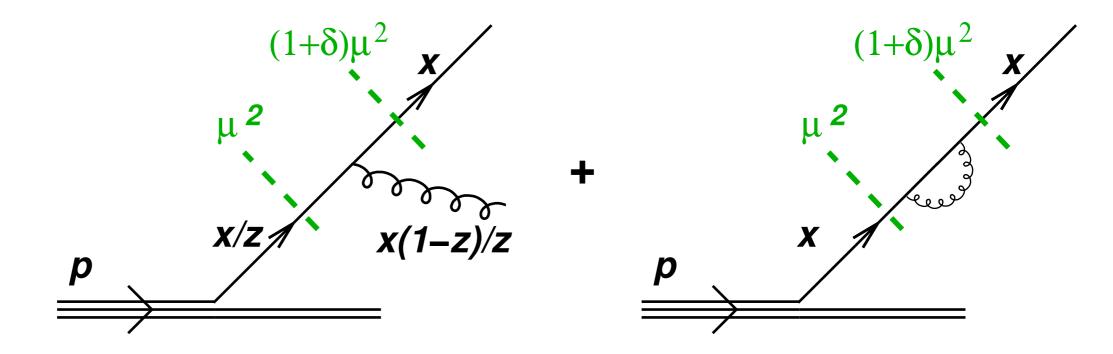
$$u(x,\mu_F^2)$$

- \blacktriangleright μ_F is the **factorisation scale** a bit like the renormalisation scale (μ_R) for the running coupling.
- ➤ As you vary the factorisation scale, the parton distributions evolve with a renormalisation-group type equation



DGLAP EQUATION

take derivative wrt factorization scale μ^2



$$\frac{dq(x,\mu^2)}{d\ln\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 dz \, p_{qq}(z) \, \frac{q(x/z,\mu^2)}{z} - \frac{\alpha_s}{2\pi} \int_0^1 dz \, p_{qq}(z) \, q(x,\mu^2)$$

 p_{qq} is real $q \leftarrow q$ splitting kernel: $p_{qq}(z) = C_F \frac{1+z^2}{1-z}$

DGLAP EQUATION

Awkward to write real and virtual parts separately. Use more compact notation:

$$\frac{dq(x,\mu^2)}{d\ln\mu^2} = \frac{\alpha_s}{2\pi} \underbrace{\int_x^1 dz \, P_{qq}(z) \, \frac{q(x/z,\mu^2)}{z}}_{P_{qq}\otimes q}, \qquad P_{qq} = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

This involves the *plus prescription*:

$$\int_0^1 dz \, [g(z)]_+ \, f(z) = \int_0^1 dz \, g(z) \, f(z) - \int_0^1 dz \, g(z) \, f(1)$$

z=1 divergences of g(z) cancelled if f(z) sufficiently smooth at z=1

DGLAP EQUATION

Proton contains both quarks and gluons — so DGLAP is a matrix in flavour

space:

$$\frac{d}{d \ln Q^2} \begin{pmatrix} q \\ g \end{pmatrix} = \begin{pmatrix} P_{q \leftarrow q} & P_{q \leftarrow g} \\ P_{g \leftarrow q} & P_{g \leftarrow g} \end{pmatrix} \otimes \begin{pmatrix} q \\ g \end{pmatrix}$$
[In general, matrix spanning all flavors, anti-flavors, $P_{qq'} = 0$ (LO), $P_{\bar{q}g} = P_{qg}$]

Splitting functions are:

$$P_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right], \qquad P_{gq}(z) = C_F \left[\frac{1 + (1-z)^2}{z} \right],$$

$$P_{gg}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + \delta(1-z) \frac{(11C_A - 4n_f T_R)}{6}.$$

Have various symmetries / significant properties, e.g.

- ▶ P_{qg} , P_{gg} : symmetric $z \leftrightarrow 1-z$ (except virtuals)
- $ightharpoonup P_{qq},\ P_{gg}$: diverge for z o 1 soft gluon emission
- ► P_{gg} , P_{gq} : diverge for $z \to 0$ Implies PDFs grow for $x \to 0$

2015 EPS HEP prize to Bjorken, Altarelli, Dokshitzer, Lipatov & Parisi

NLO DGLAP

$$P_{ps}^{(1)}(x) = 4 C_F n_f \left(\frac{20}{9} \frac{1}{x} - 2 + 6x - 4H_0 + x^2 \left[\frac{8}{3} H_0 - \frac{56}{9} \right] + (1+x) \left[5H_0 - 2H_{0,0} \right] \right)$$

$$P_{qg}^{(1)}(x) = 4 C_{A} n_{f} \left(\frac{20}{9} \frac{1}{x} - 2 + 25x - 2p_{qg}(-x)H_{-1,0} - 2p_{qg}(x)H_{1,1} + x^{2} \left[\frac{44}{3} H_{0} - \frac{218}{9} \right] + 4(1-x) \left[H_{0,0} - 2H_{0} + xH_{1} \right] - 4\zeta_{2}x - 6H_{0,0} + 9H_{0} \right) + 4 C_{F} n_{f} \left(2p_{qg}(x) \left[H_{1,0} + H_{1,1} + H_{2} + H_{2} \right] + 4x^{2} \left[H_{0} + H_{0,0} + \frac{5}{2} \right] + 2(1-x) \left[H_{0} + H_{0,0} - 2xH_{1} + \frac{29}{4} \right] - \frac{15}{2} - H_{0,0} - \frac{1}{2} H_{0} \right)$$

$$\begin{split} P_{\mathrm{gq}}^{(1)}(x) &= 4 \, C_{A} C_{F} \left(\frac{1}{x} + 2 p_{\mathrm{gq}}(x) \left[H_{1,0} + H_{1,1} + H_{2} - \frac{11}{6} H_{1} \right] - x^{2} \left[\frac{8}{3} H_{0} - \frac{44}{9} \right] + 4 \zeta_{2} - 2 \right. \\ &- 7 H_{0} + 2 H_{0,0} - 2 H_{1} x + (1+x) \left[2 H_{0,0} - 5 H_{0} + \frac{37}{9} \right] - 2 p_{\mathrm{gq}}(-x) H_{-1,0} \right) - 4 \, C_{F} n_{f} \left(\frac{2}{3} x \right) \\ &- p_{\mathrm{gq}}(x) \left[\frac{2}{3} H_{1} - \frac{10}{9} \right] + 4 \, C_{F}^{2} \left(p_{\mathrm{gq}}(x) \left[3 H_{1} - 2 H_{1,1} \right] + (1+x) \left[H_{0,0} - \frac{7}{2} + \frac{7}{2} H_{0} \right] - 3 H_{0,0} \right. \\ &+ 1 - \frac{3}{2} H_{0} + 2 H_{1} x \right) \end{split}$$

$$\begin{split} P_{\rm gg}^{(1)}(x) &= 4 \, C_{A} n_{f} \left(1 - x - \frac{10}{9} p_{\rm gg}(x) - \frac{13}{9} \left(\frac{1}{x} - x^{2} \right) - \frac{2}{3} (1 + x) H_{0} - \frac{2}{3} \delta(1 - x) \right) + 4 \, C_{A}^{2} \left(27 + (1 + x) \left[\frac{11}{3} H_{0} + 8 H_{0,0} - \frac{27}{2} \right] + 2 p_{\rm gg}(-x) \left[H_{0,0} - 2 H_{-1,0} - \zeta_{2} \right] - \frac{67}{9} \left(\frac{1}{x} - x^{2} \right) - 12 H_{0} \right. \\ &\left. - \frac{44}{3} x^{2} H_{0} + 2 p_{\rm gg}(x) \left[\frac{67}{18} - \zeta_{2} + H_{0,0} + 2 H_{1,0} + 2 H_{2} \right] + \delta(1 - x) \left[\frac{8}{3} + 3 \zeta_{3} \right] \right) + 4 \, C_{F} n_{f} \left(2 H_{0} + \frac{2}{3} \frac{1}{x} + \frac{10}{3} x^{2} - 12 + (1 + x) \left[4 - 5 H_{0} - 2 H_{0,0} \right] - \frac{1}{2} \delta(1 - x) \right) \, . \end{split}$$

NLO:

$$P_{ab} = \frac{\alpha_{s}}{2\pi} P^{(0)} + \frac{\alpha_{s}^{2}}{16\pi^{2}} P^{(1)}$$

Curci, Furmanski & Petronzio '80

NNLO DGLAP

 $\frac{13}{6}H_{1\,0} \quad 3xH_{1\,0} \quad H_{3\,0} \quad H_{2\,\zeta_{2}} \quad 2H_{2\,1\,0} \quad 3H_{2\,0\,0} \quad \frac{1}{2}H_{0\,0\,\zeta_{2}} \quad \frac{1}{2}H_{1\,\zeta_{2}} \quad \frac{9}{4}H_{1\,0\,0}$ $\begin{array}{c} \frac{1}{3} \ 1 \ x \ \frac{\pi}{3} H_2 \ \frac{\pi}{3} \xi_2 \ \xi_3 \ H_{21} \ 2H_3 \ 2H_0 \xi_2 \ \frac{1}{6} H_{00} \ H_{000} \ 10 \text{Lef} \ \frac{n_f}{f} \ \frac{1}{12} v_1 \\ \\ \frac{25}{12} H_{00} \ H_{000} \ \frac{583}{12} H_0 \ \frac{101}{12} \frac{73}{4} \xi_2 \ \frac{73}{4} H_2 \ H_3 \ 5H_{20} \ H_{21} \ H_0 \xi_2 \ x^2 \ \frac{55}{12} \\ \\ \frac{85}{12} H_1 \ \frac{22}{3} H_{00} \ \frac{109}{6} \ \frac{13}{54} H_2 \ \frac{28}{9} \xi_2 \ \frac{29}{12} H_2 \ \frac{16}{3} H_0 \xi_2 \ \frac{16}{3} H_3 \xi_3 \ \frac{4H_{20}}{3} \ \frac{4H_{20}}{4} \frac{4}{3} H_{21} \ \frac{26}{3} \xi_3 \\ \\ \frac{23}{3} H_{000} \ \frac{4}{3} \frac{1}{x} \ x^2 \ \frac{21}{21} H_{10} \ \frac{523}{12} H_{13} \ 3\xi_3 \ \frac{51}{56} \ \frac{1}{2} H_{100} \ H_{11} \ H_{110} \ H_{111} \\ \\ 1 \ x \ \frac{1}{2} H_{100} \ \frac{7}{12} H_{11} \ \frac{2743}{72} H_0 \ \frac{53}{12} H_{00} \ \frac{251}{12} H_1 \ \frac{5}{4} \xi_2 \ \frac{5}{4} H_2 \ \frac{8}{3} H_{10} \ 3t H_{10} \\ \\ 3H_0 \xi_3 \ 3H_3 \ H_{110} \ H_{111} \ 1 \ x \ \frac{1609}{12} \ \frac{16}{12} \frac{9}{12} H_{000} \ 4H_2 \ 7H_{20} \ 10 x_3^3 \ \frac{10}{10} \xi_2^2 \\ \\ \end{array}$

 P_{qg}^2 x $16C_AC_Fn_f$ p_{qg} x $\frac{39}{2}H_1\zeta_3$ $4H_{111}$ $3H_{200}$ $\frac{15}{4}H_{12}$ $\frac{9}{4}H_{110}$ $3H_{210}$

 $H_0\zeta_3 - 2H_{2\,1\,1} - 4H_2\zeta_2 - \frac{173}{12}H_0\zeta_2 - \frac{551}{72}H_{0\,0} - \frac{64}{3}\zeta_3 - \zeta_2^2 - \frac{49}{4}H_2 - \frac{3}{2}H_{1\,0\,0\,0} - \frac{1}{3}H_{1\,0\,0}$

 $H_{3\,1}$ $2H_{3\,0}$ $2H_{1}\zeta_{2}$ $H_{1\,2}$ $H_{1\,0\,0}$ $H_{1\,1\,0}$ $H_{2}\zeta_{2}$ ζ_{2}^{2} $\frac{43}{8}H_{2}$ $\frac{49}{8}\zeta_{2}$ $\frac{13}{8}H_{1\,1}$

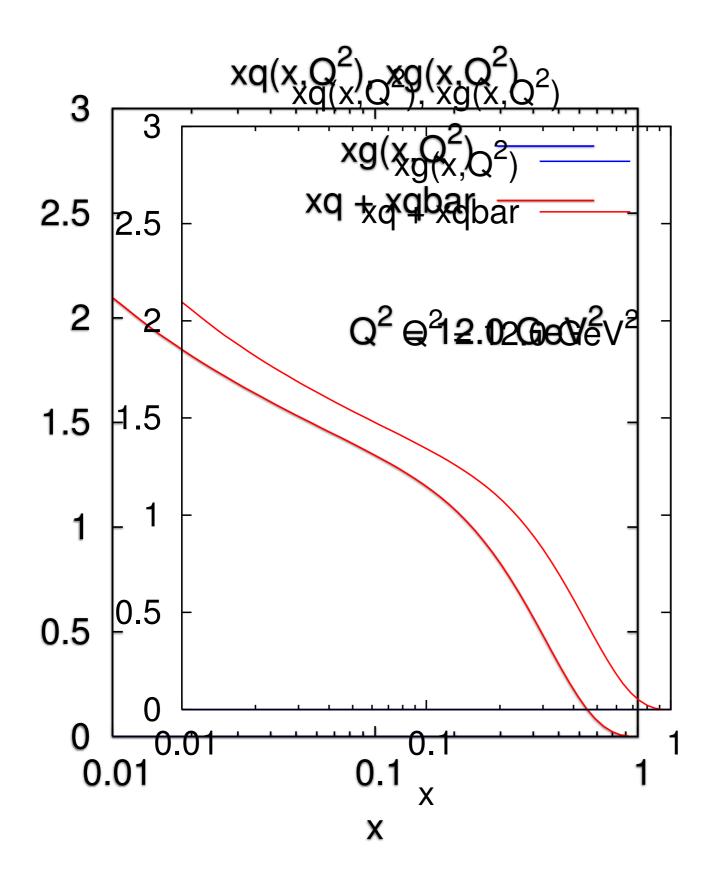
 $4H_{3\,\,1}\ \ \, \frac{43}{6}H_{1\,\,1\,\,1}\ \ \, \frac{109}{12}\zeta_2\ \ \, \frac{17}{3}H_{2\,\,1}\ \ \, \frac{71}{24}H_{1\,\,0}\ \ \, \frac{11}{6}H_{2\,\,0}\ \ \, \frac{21}{2}\zeta_3\ \ \, \frac{3}{2}H_{1\,\,0\,\,0\,\,0}\ \ \, H_{1\,\,2\,\,0}$ $\frac{395}{50}H_0 \quad 2H_{10}\zeta_2 \quad H_{11}\zeta_2 \quad \frac{55}{12}H_{110} \quad 2H_{1100} \quad 4H_{1110} \quad 2H_{1111} \quad 4H_{112} \quad \frac{55}{12}H_{12}$

 $H_{1000} = 1 \times 9H_{100} + H_{111} = 10H_1\zeta_2 = 3H_0\zeta_3 + H_{22} + H_2\zeta_2 + H_{000} = 5H_{200}$

 $6H_{10} 8H_0\zeta_3 6H_{20} \frac{53}{6}H_0\zeta_2 \frac{49}{2}H_0 \frac{185}{4}\zeta_2 \frac{511}{12} \frac{1}{2}H_{20} 3H_{10} 4H_{0000}$

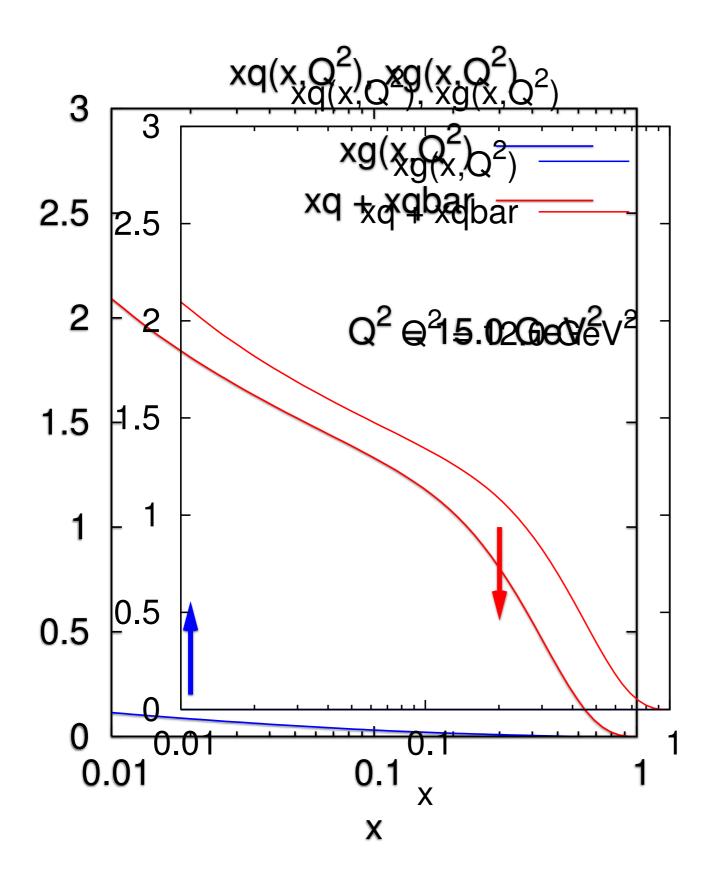
 $\frac{67}{12}H_{0\,\,0} \quad \frac{43}{2}\zeta_3 \quad H_{2\,\,1} \quad \frac{97}{12}H_1 \quad 4\zeta_2^{\,\,2} \quad \frac{9}{2}H_3 \quad 8H_{\,\,3\,\,0} \quad \frac{33}{2}H_{0\,\,0\,\,0} \quad \frac{4}{3}\,\frac{1}{x} \quad x^2 \quad \frac{1}{2}H_2 \quad H_{2\,\,0}$

NNLO, $P_{ab}^{(2)}$: Moch, Vermaseren & Vogt '04



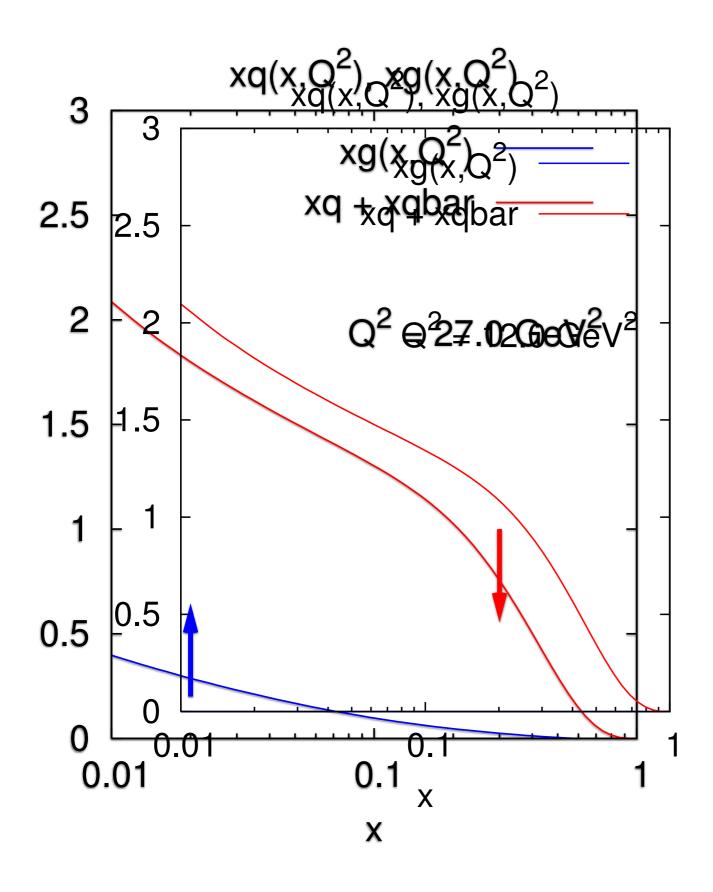
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



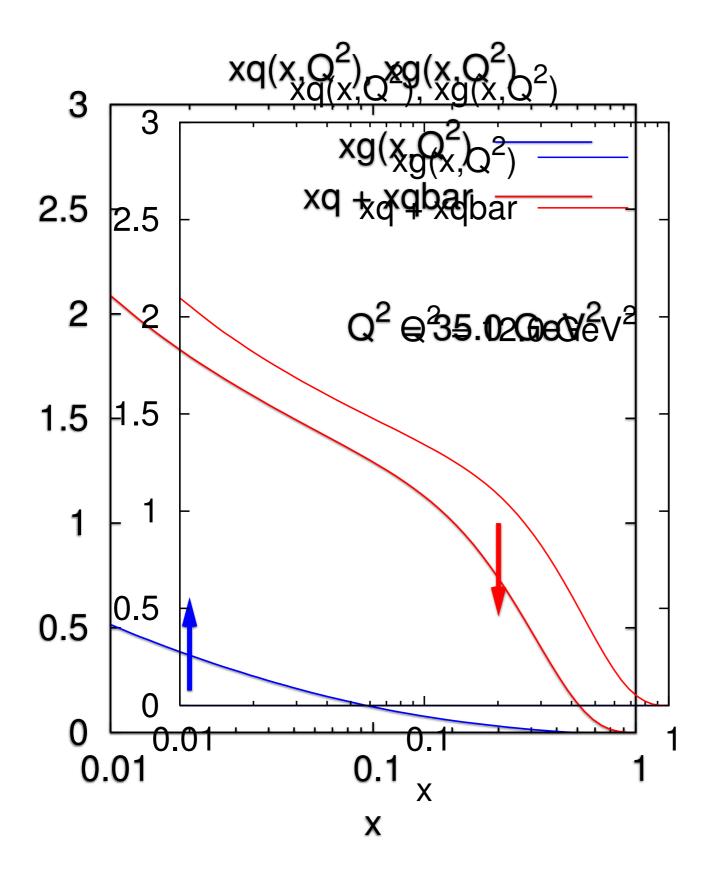
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



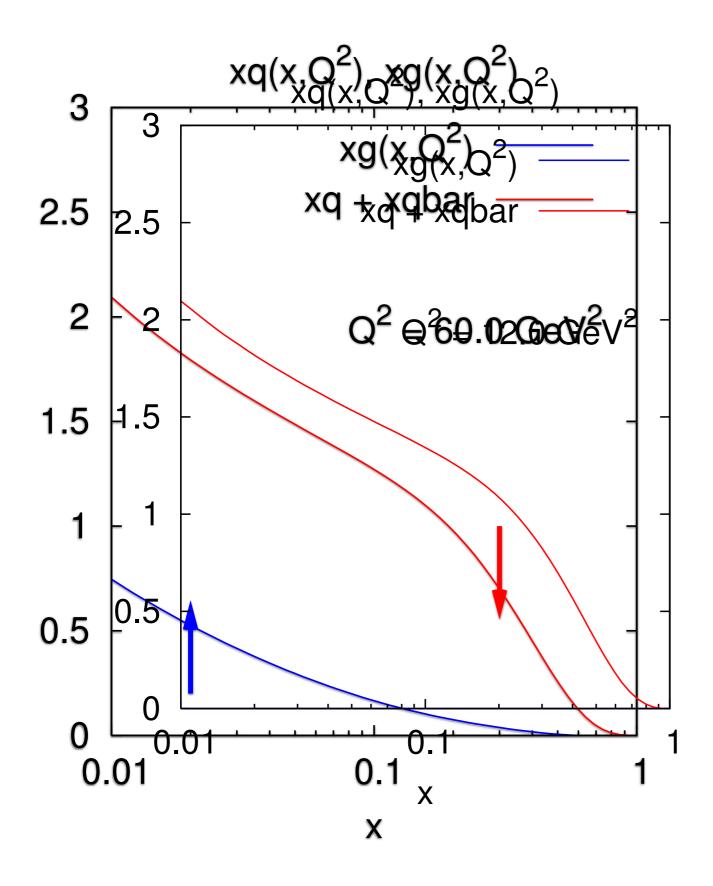
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



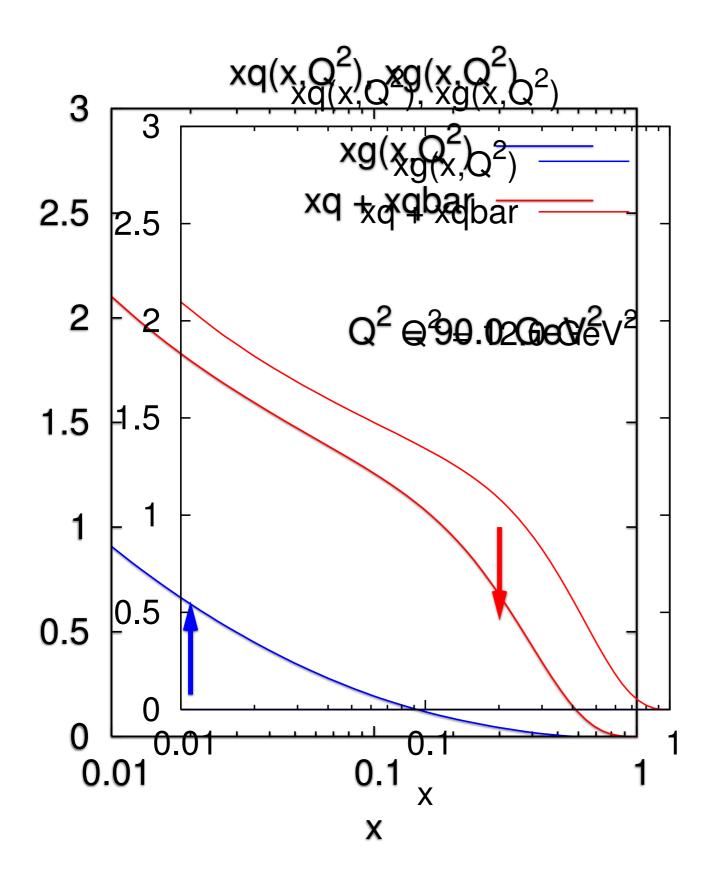
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



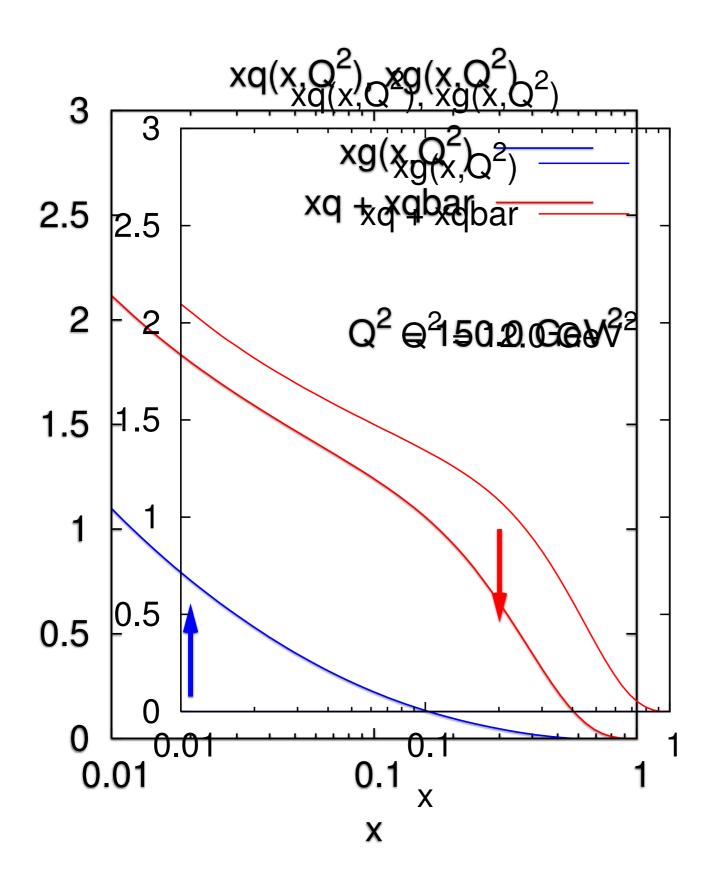
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



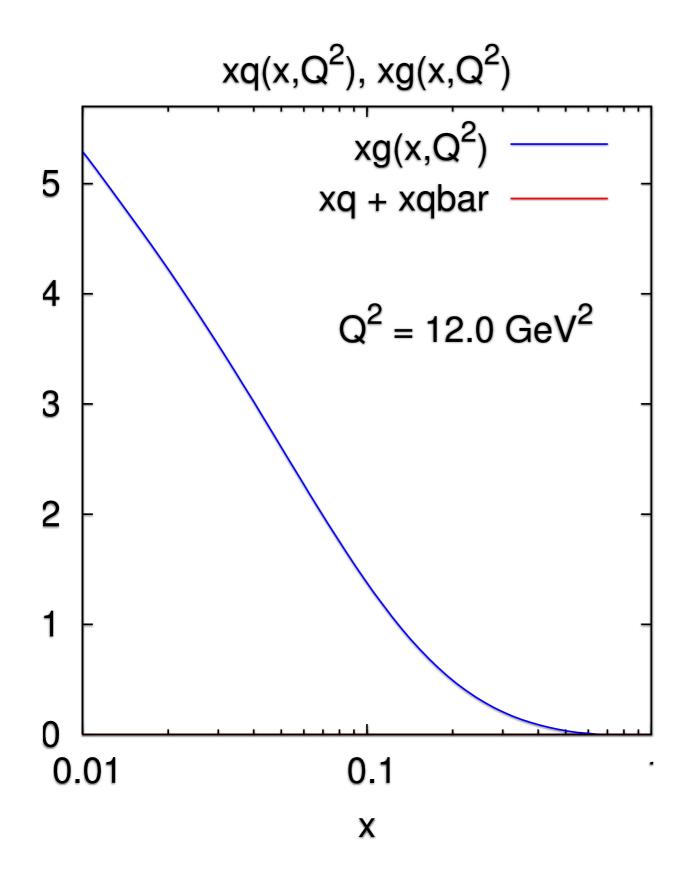
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



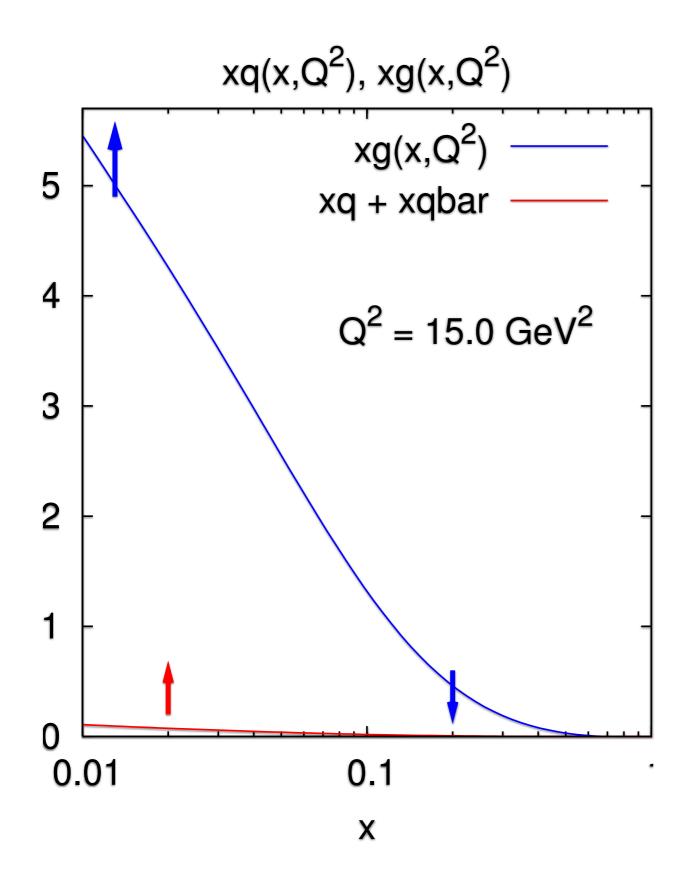
$$\partial_{\ln Q^2} q = P_{q \leftarrow q} \otimes q$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow q} \otimes q$

- quark is depleted at large x
- gluon grows at small x



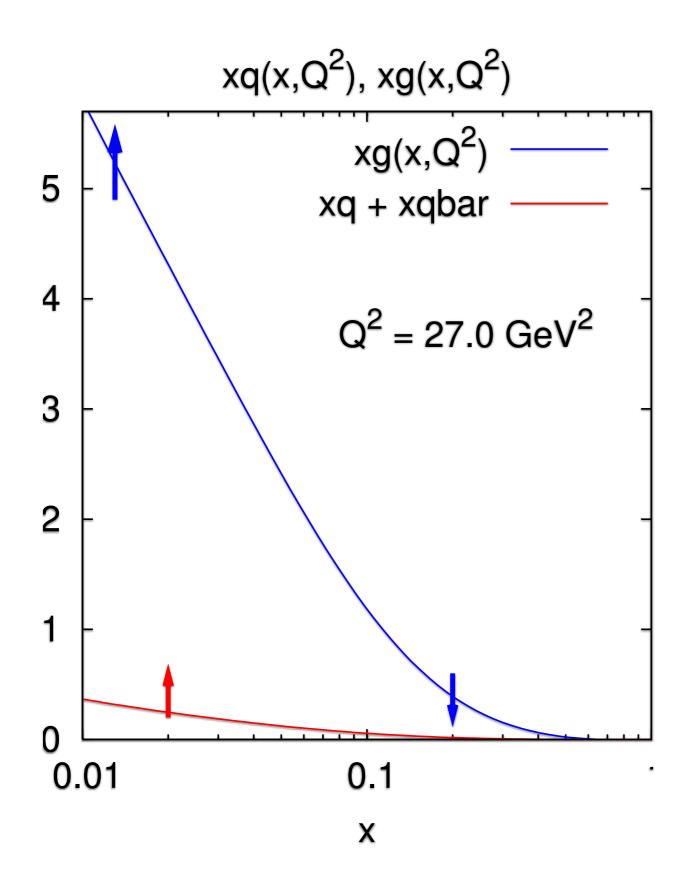
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



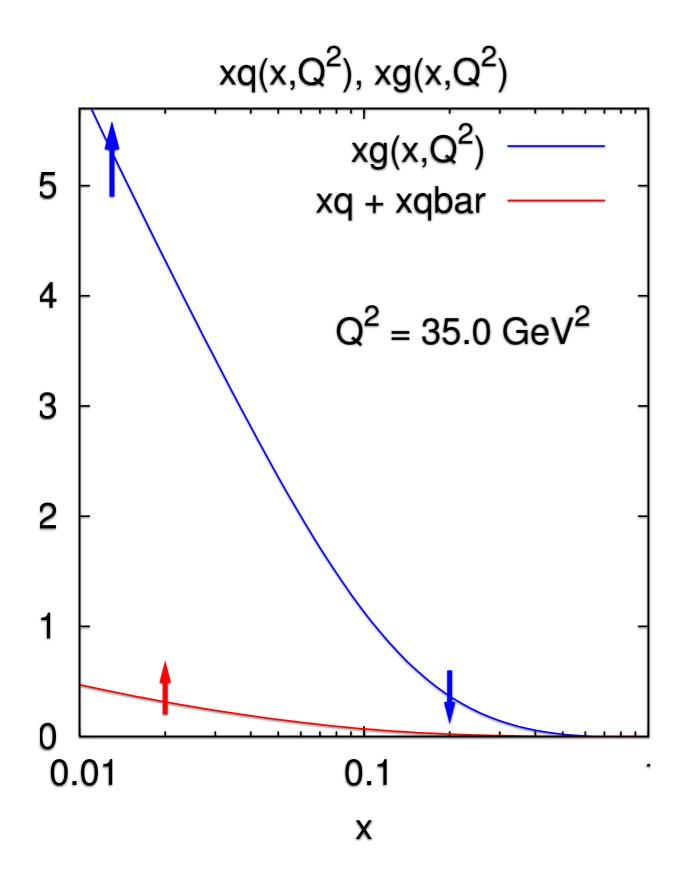
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



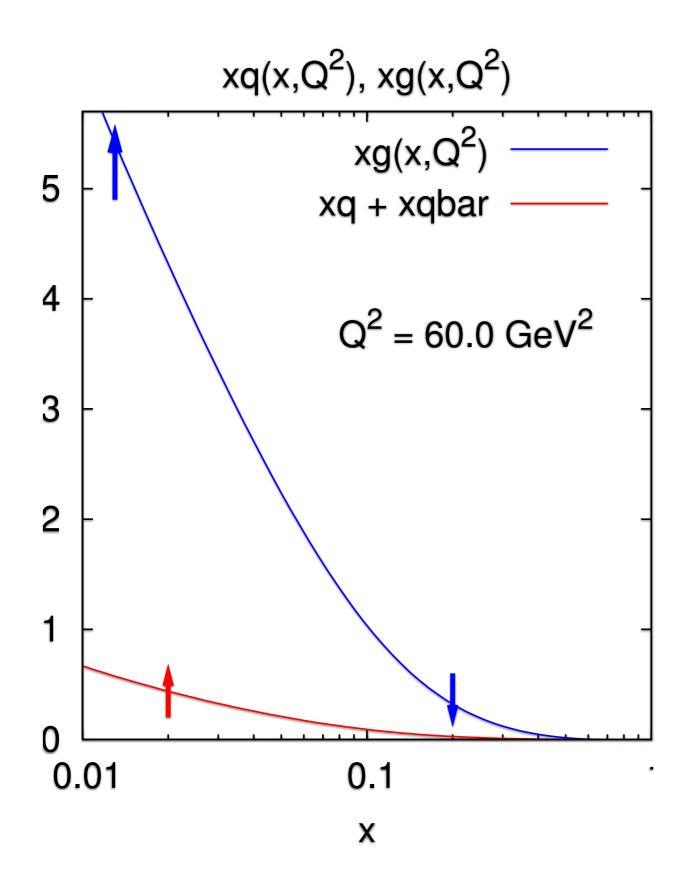
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



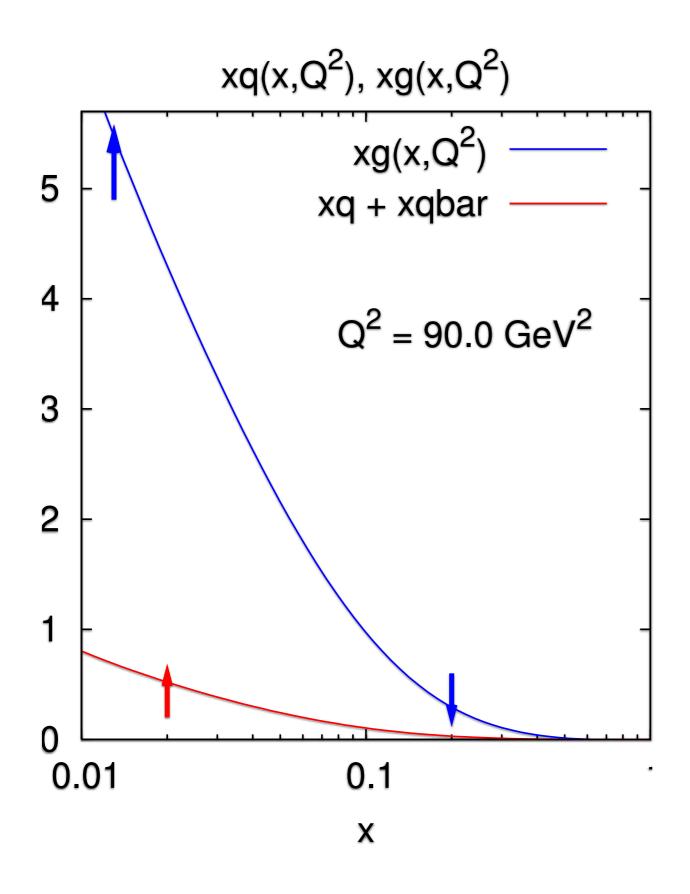
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



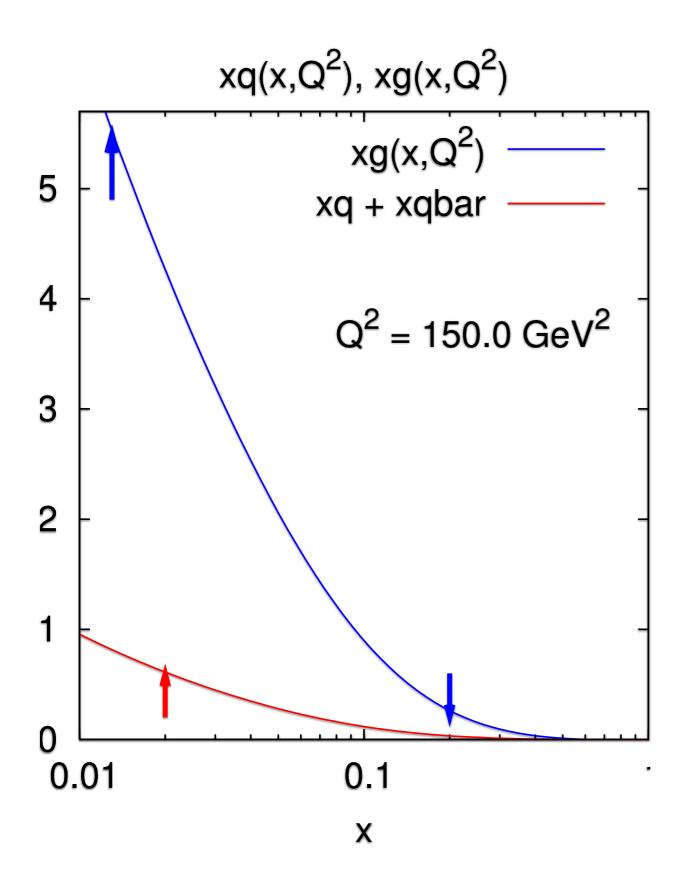
$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.



2nd example: start with just gluons.

$$\partial_{\ln Q^2} q = P_{q \leftarrow g} \otimes g$$
 $\partial_{\ln Q^2} g = P_{g \leftarrow g} \otimes g$

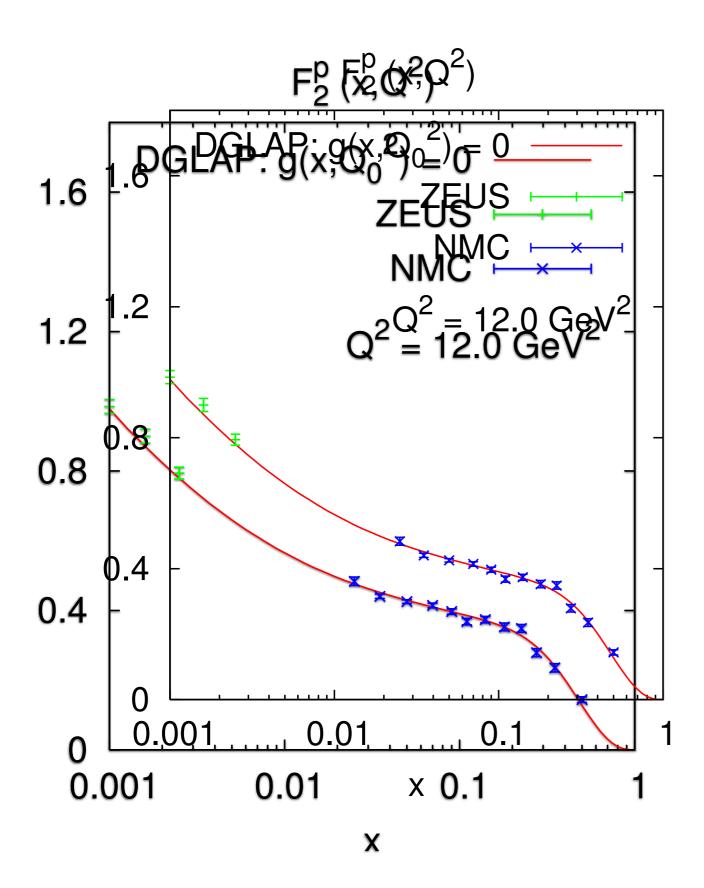
- gluon is depleted at large x.
- high-x gluon feeds growth of small x gluon & quark.

DGLAP evolution:

- partons lose momentum and shift towards smaller x
- high-x partons drive growth of low-x gluon

determining the gluon

which is critical at hadron colliders (e.g. Higgs dominantly produced by gluon-gluon fusion), but not directly probed in Deep-Inelastic-Scattering

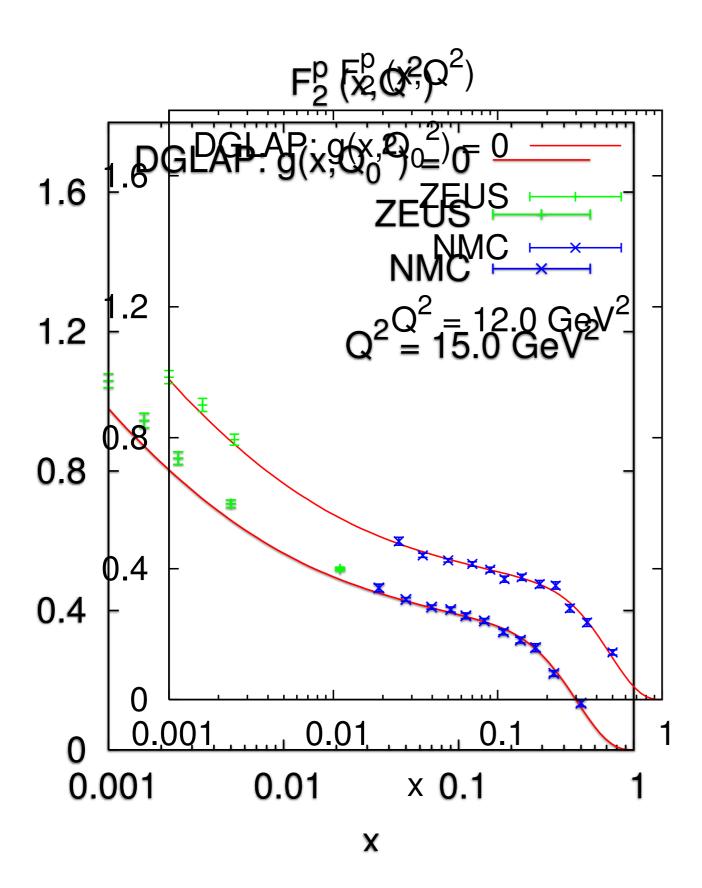


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

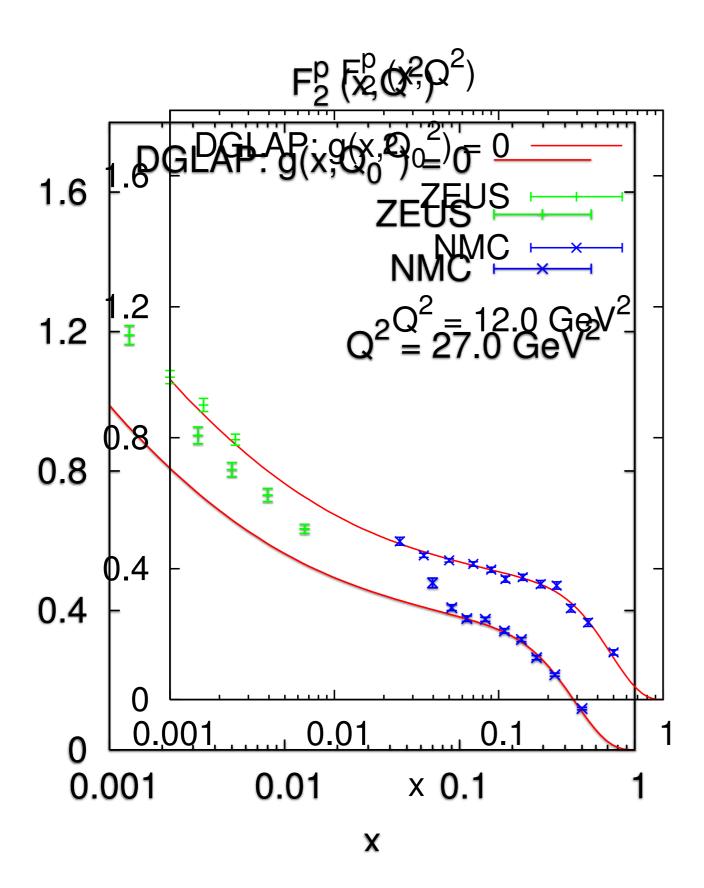


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

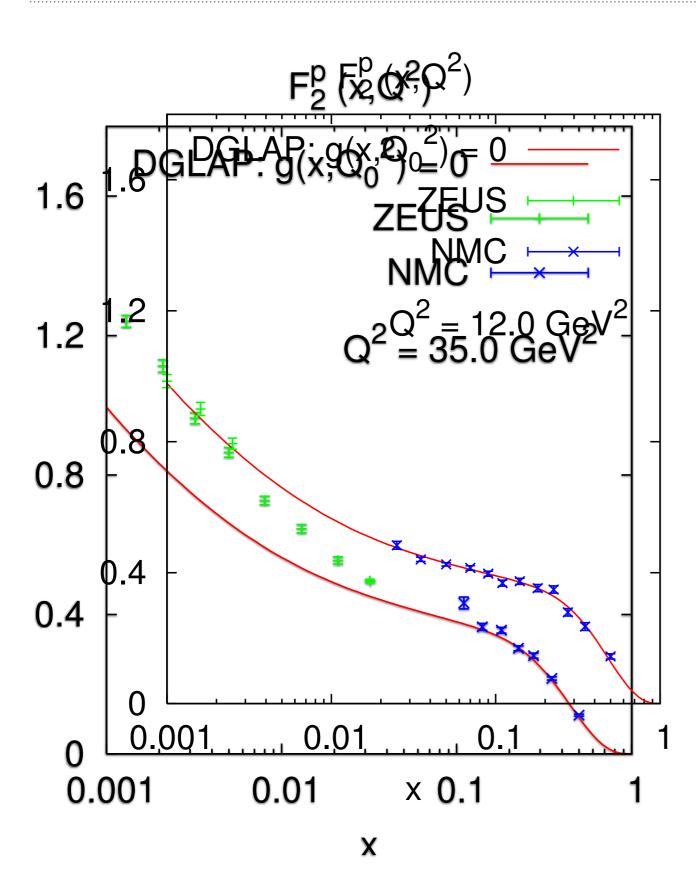


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

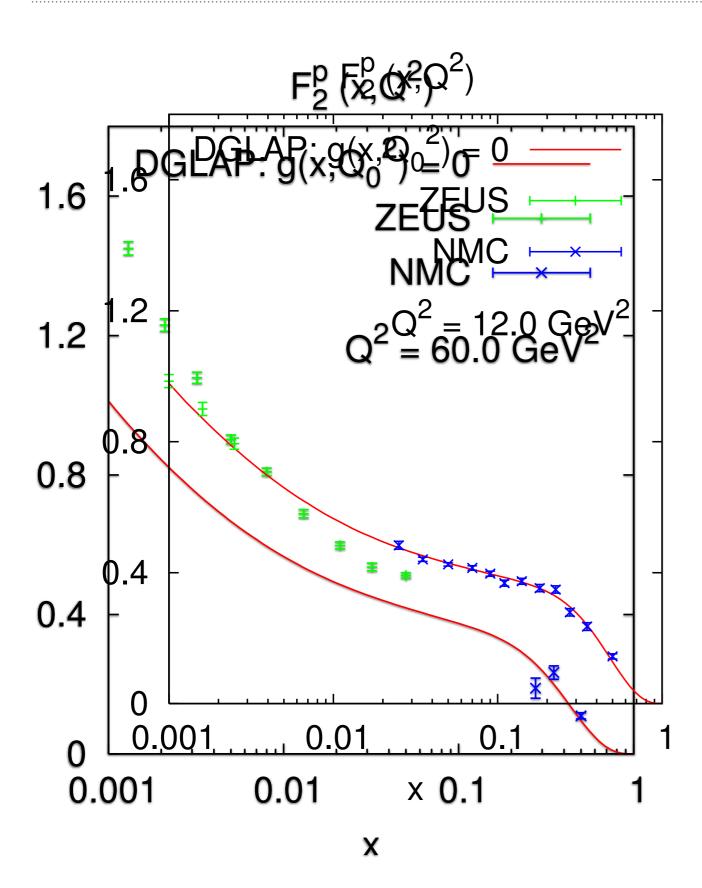


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

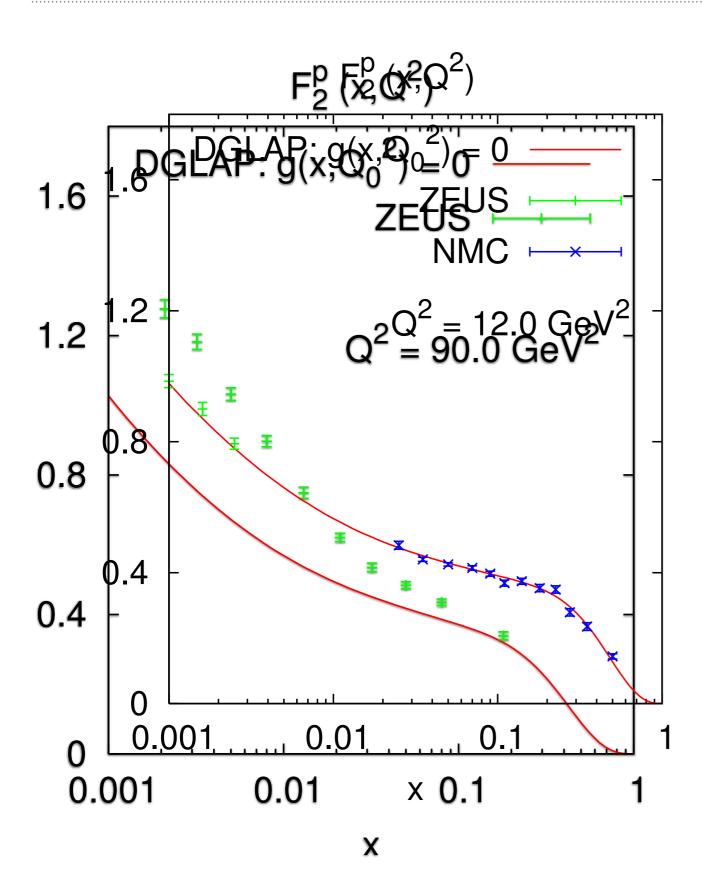


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

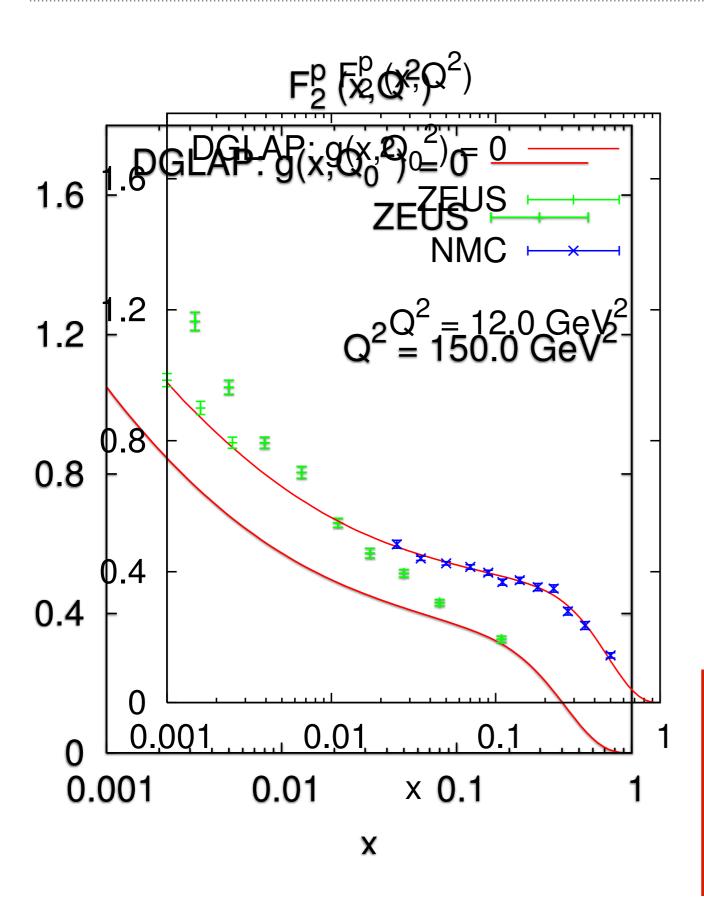


Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$



Fit quark distributions to $F_2(x, Q_0^2)$, at *initial scale* $Q_0^2 = 12 \text{ GeV}^2$.

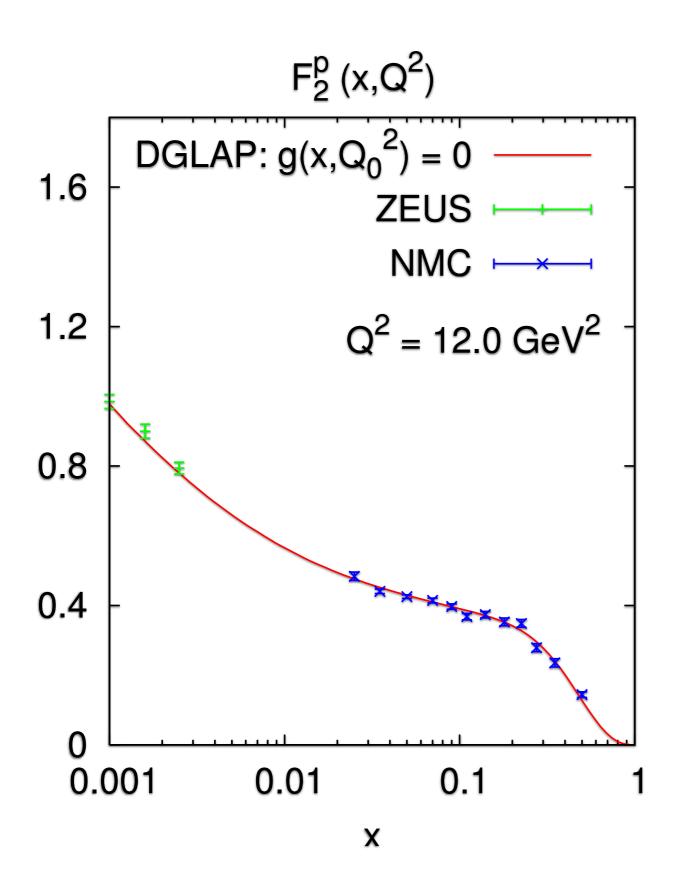
NB: Q_0 often chosen lower

Assume there is no gluon at Q_0^2 :

$$g(x,Q_0^2)=0$$

Use DGLAP equations to evolve to higher Q^2 ; compare with data.

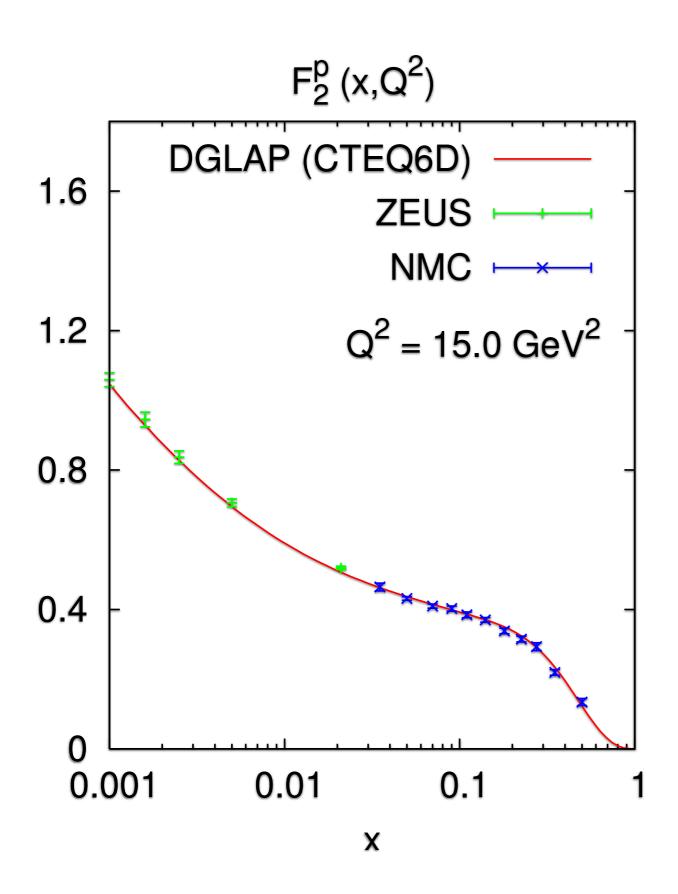
COMPLETE FAILURE to reproduce data evolution



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

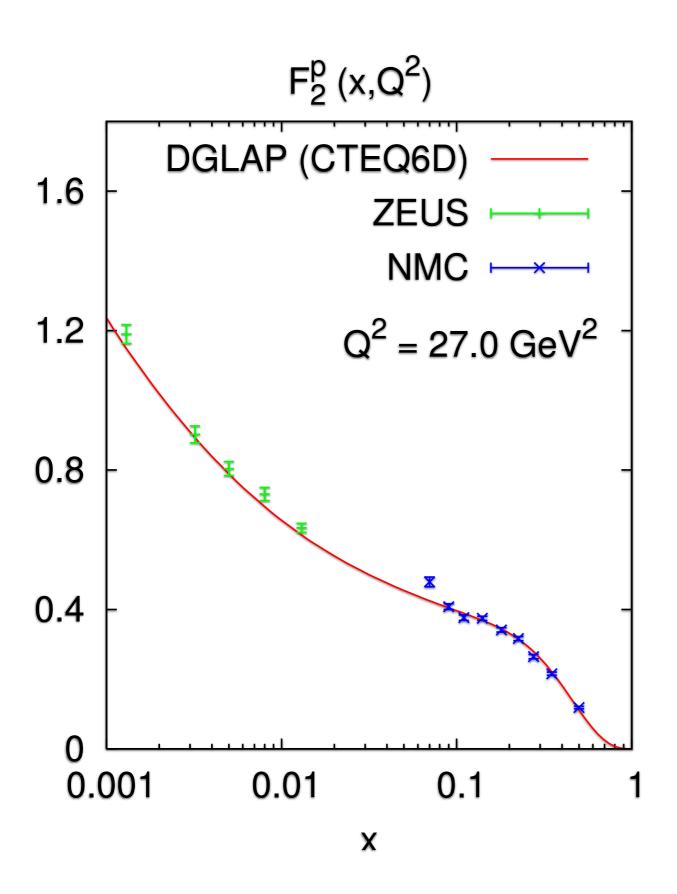
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

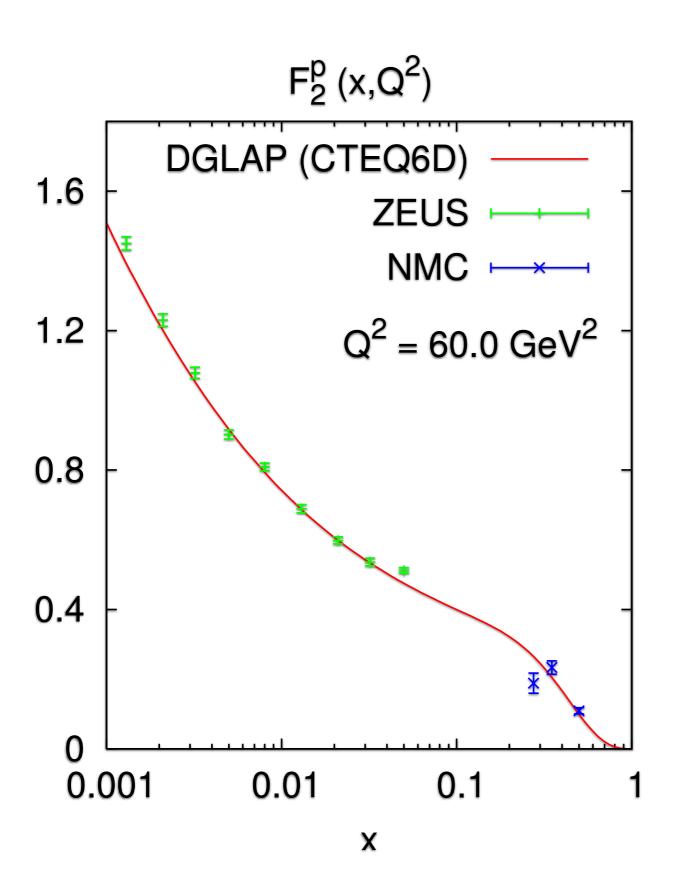
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

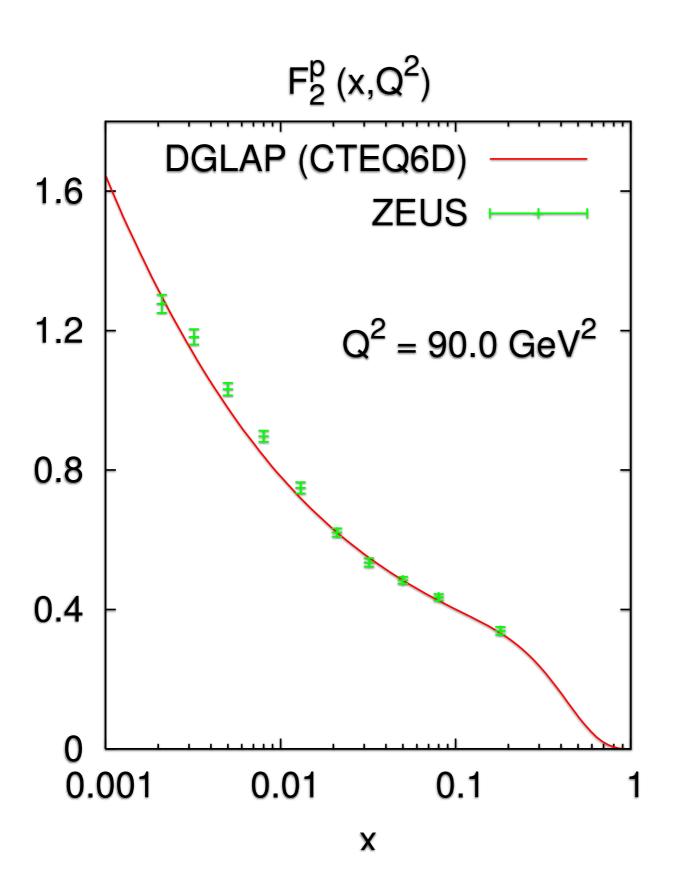
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

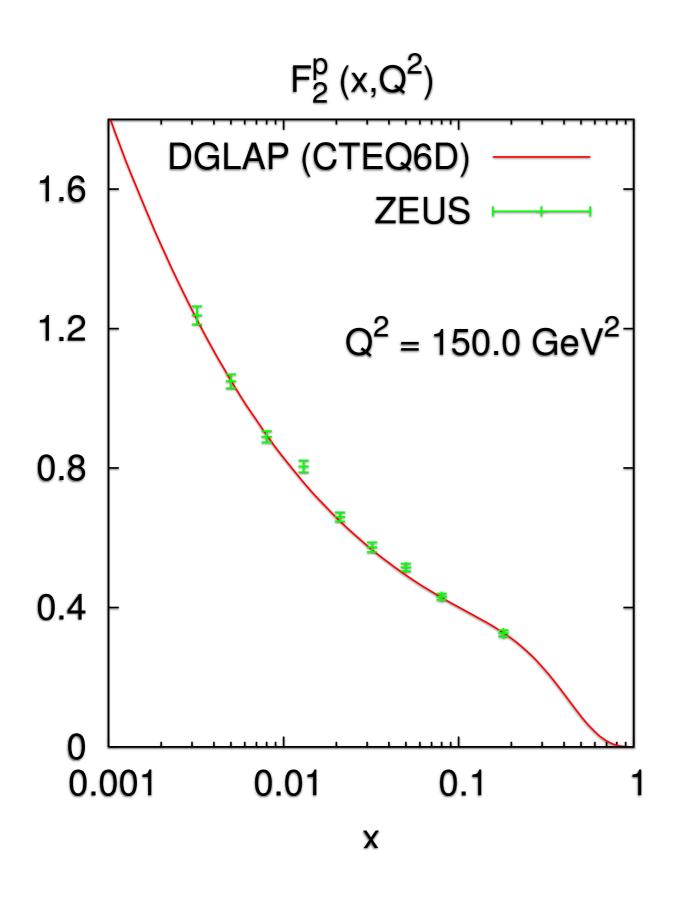
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

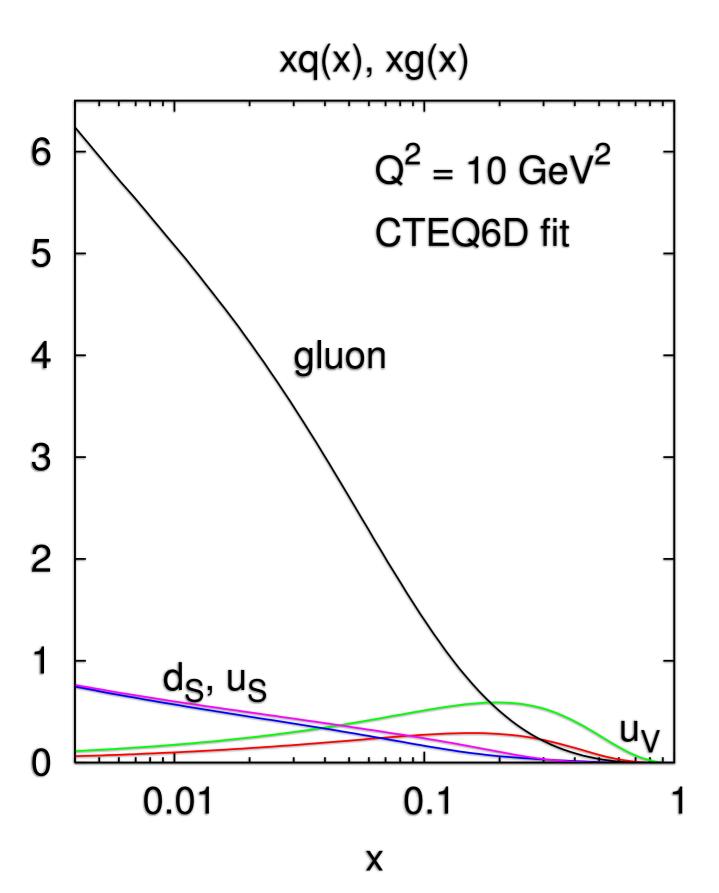
$$g \to q\bar{q}$$

generates extra quarks at large Q2 faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

SUCCESS

Resulting gluon distribution, compared to quarks

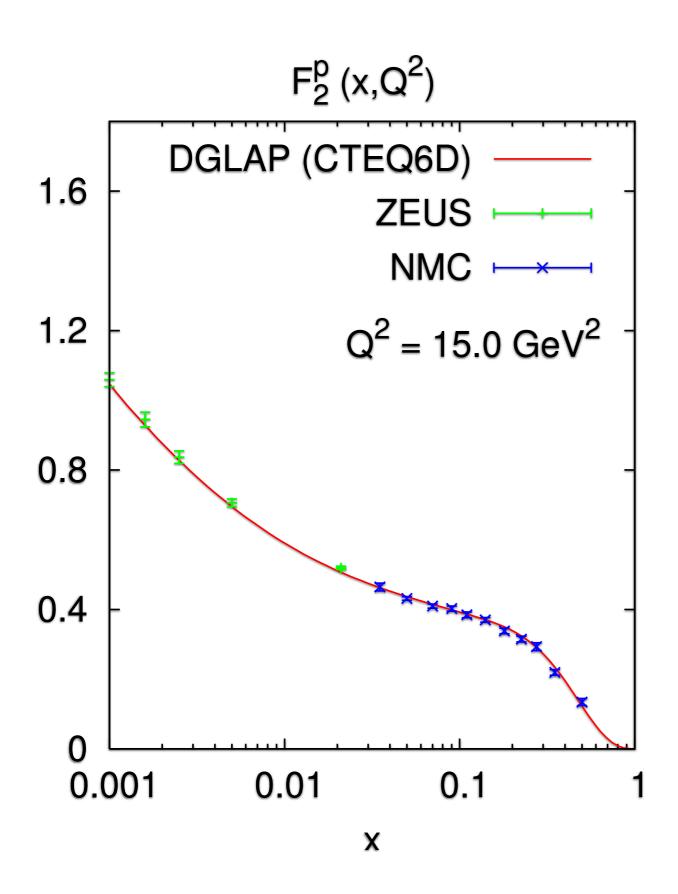


Resulting gluon distribution is **HUGE!**

Carries 47% of proton's momentum (at scale of 100 GeV)

Crucial in order to satisfy momentum sum rule.

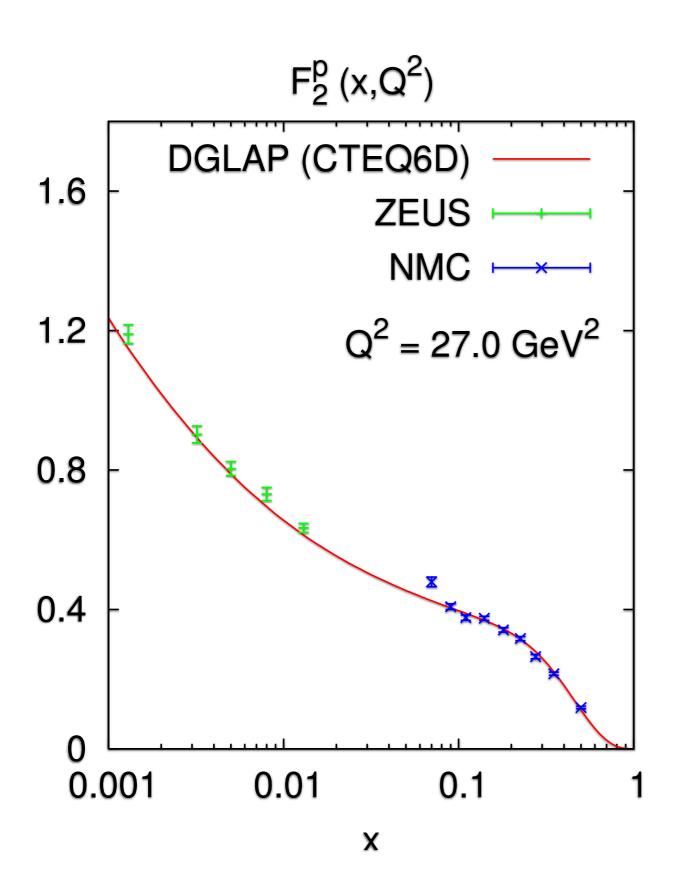
Large value of gluon has big impact on phenomenology



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

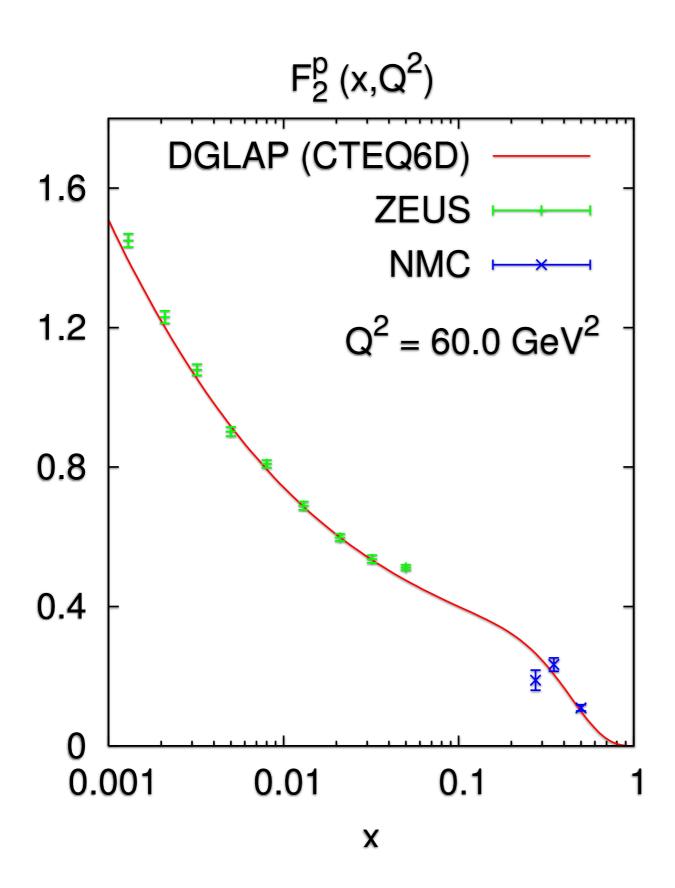
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

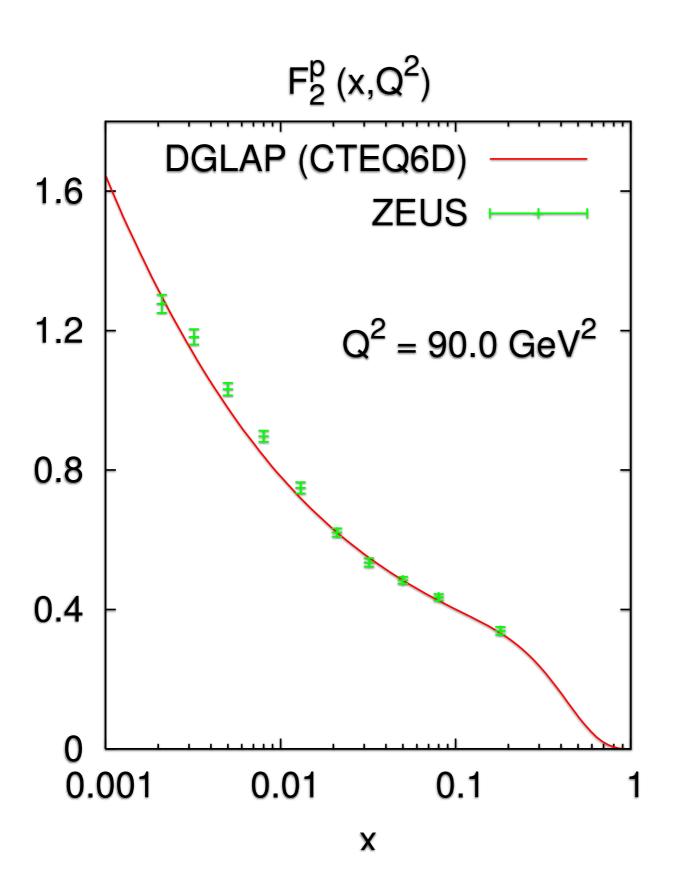
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

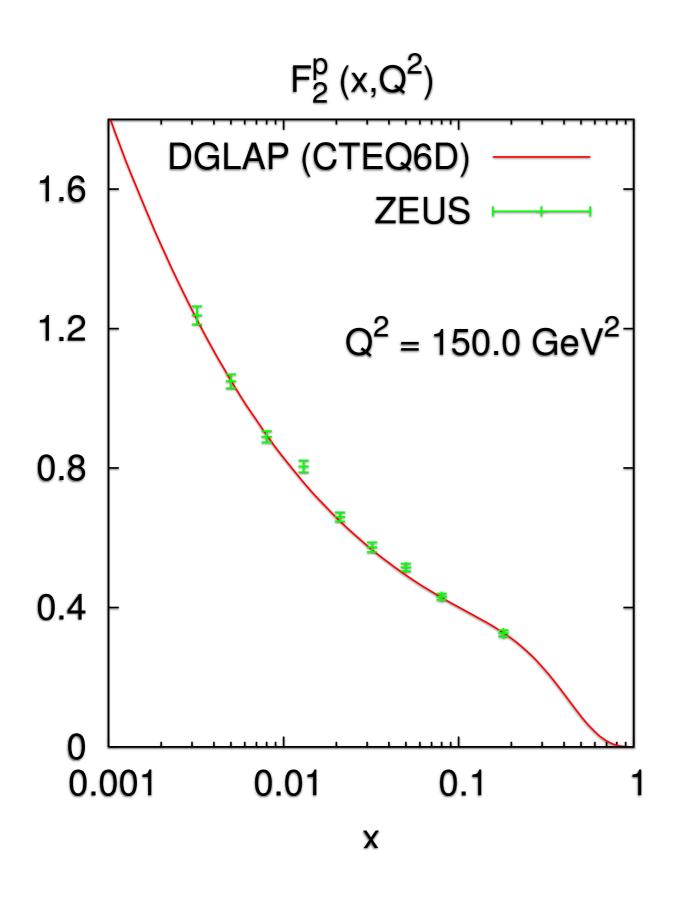
generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

generates extra quarks at large Q2 faster rise of F2



If gluon \neq 0, splitting

$$g \to q\bar{q}$$

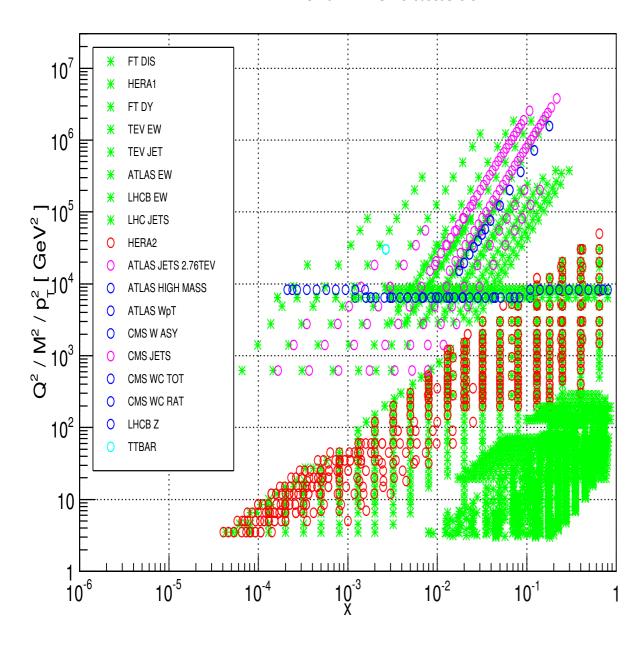
generates extra quarks at large Q2 faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

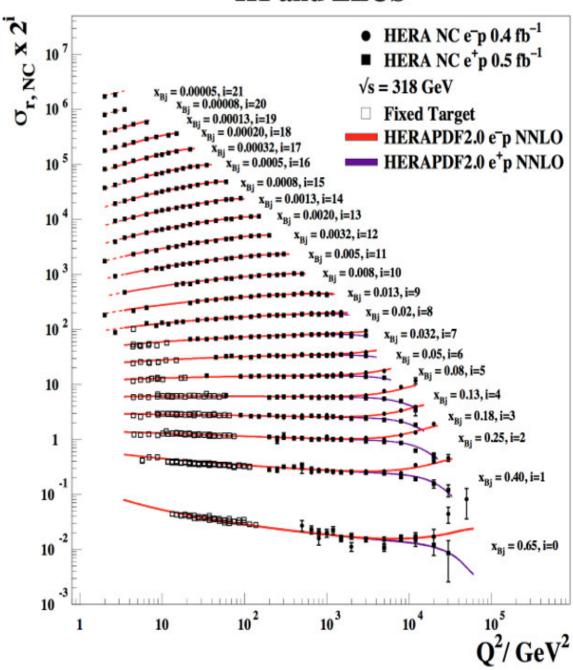
SUCCESS

TODAY'S PDF FITS

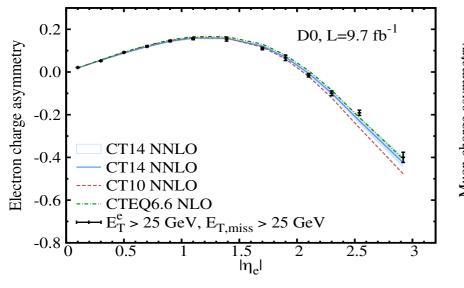
NNPDF3.0 NLO dataset

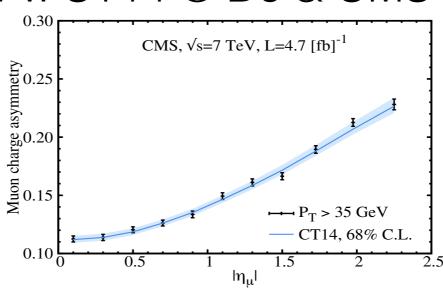


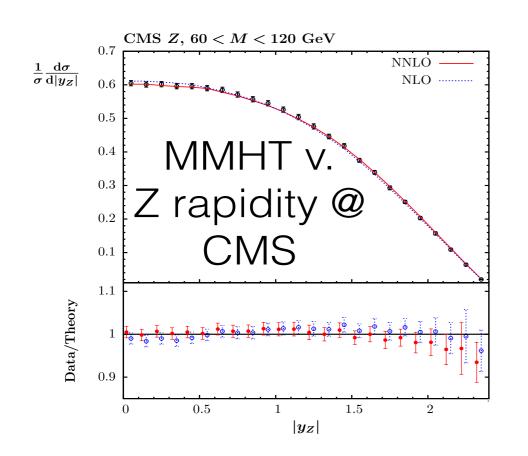
H1 and ZEUS

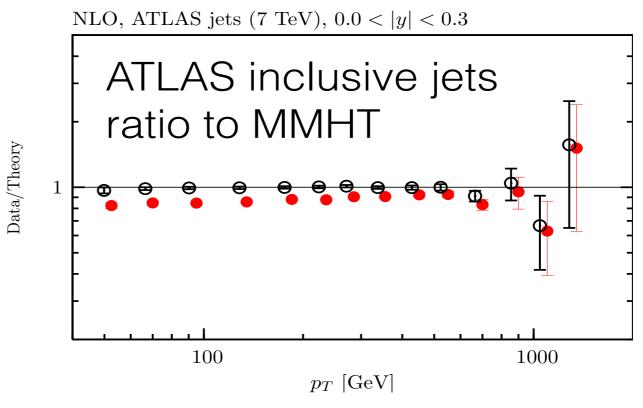


TODAY'S PDF FITS

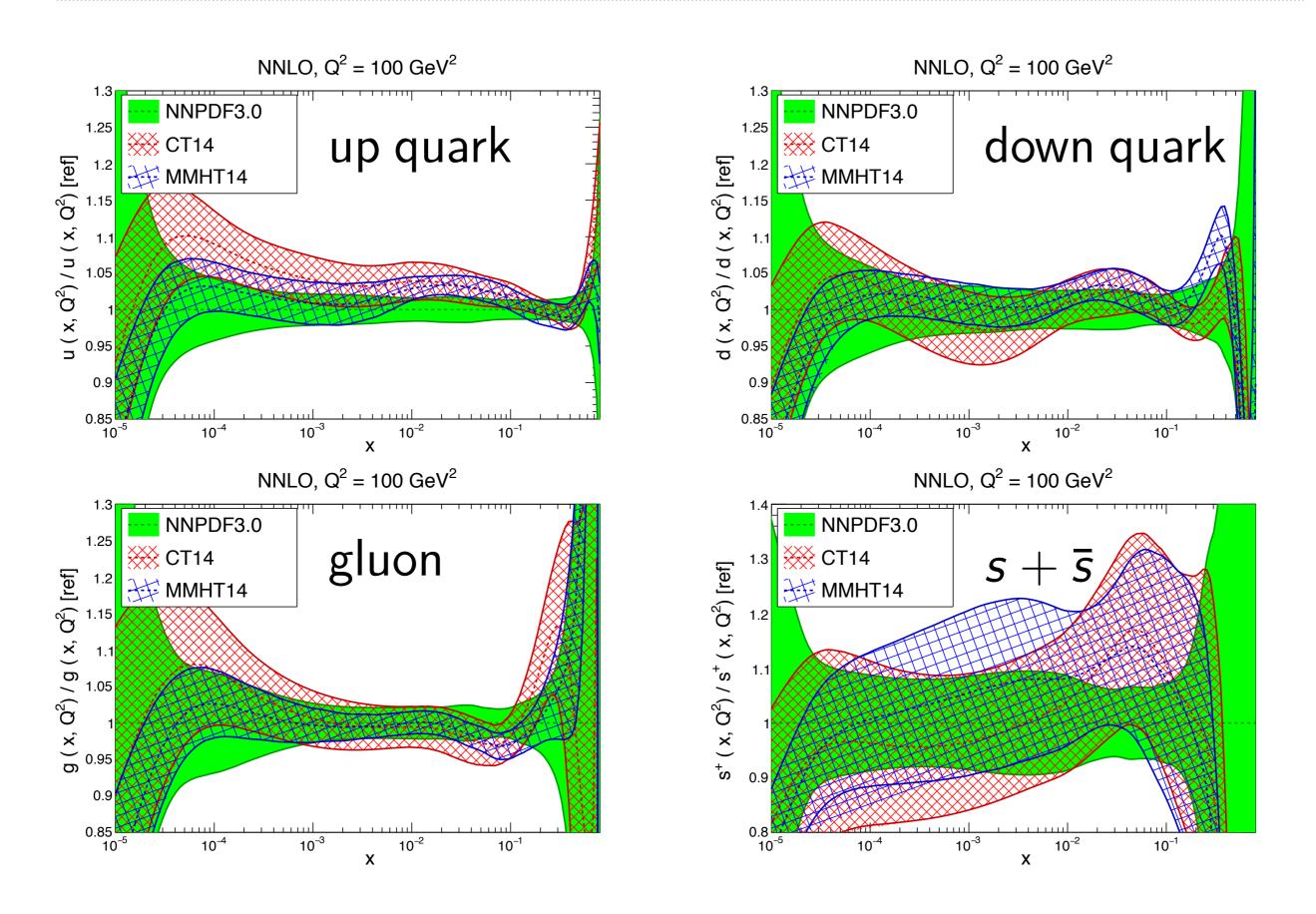


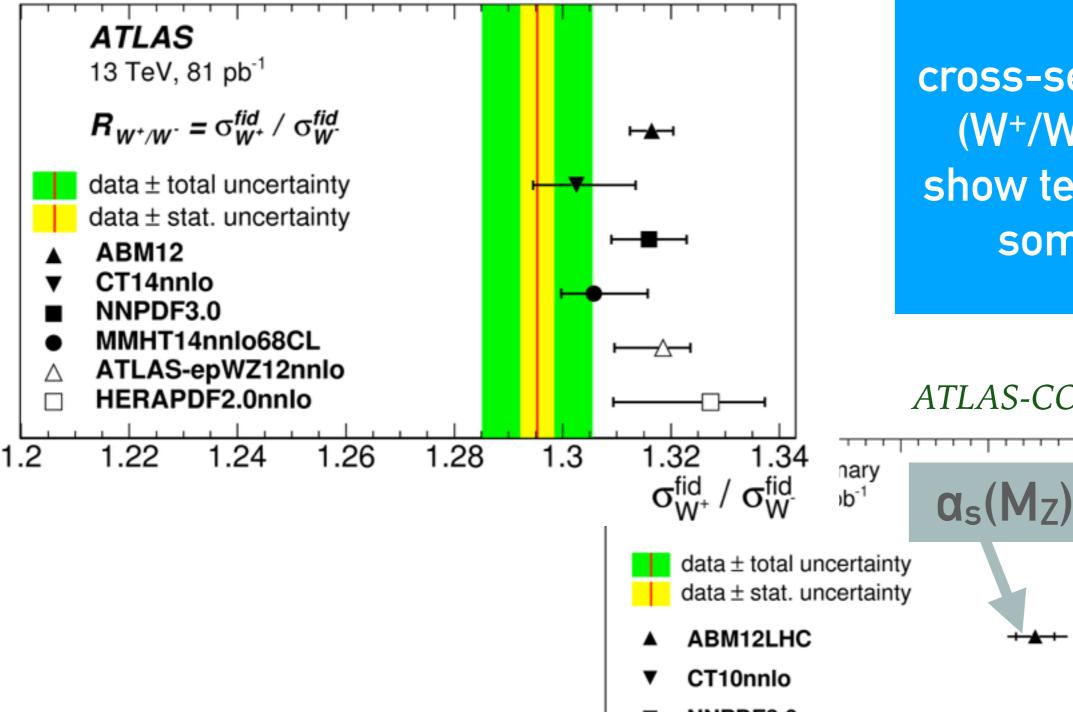






THREE GLOBAL PDF FITS: CT14, MMHT2014, NNPDF30

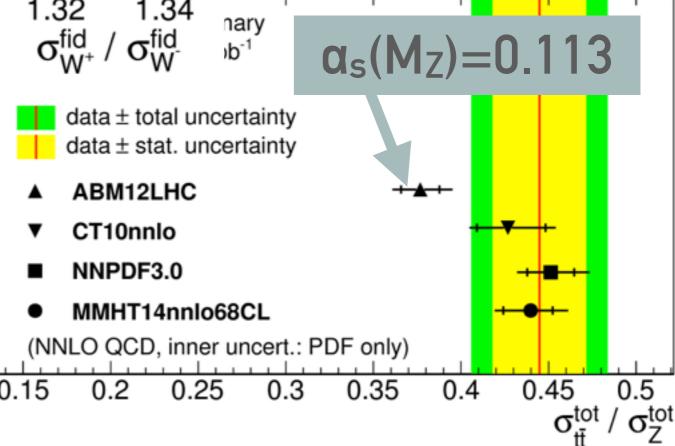




NB: top-quark mass choice affects this plot

cross-section ratios (W+/W-, ttbar/Z) show tensions with some PDFs

ATLAS-CONF-2015-049



FINAL REMARKS ON PDFS

- ➤ In range 10^{-3} < x < 0.1, core PDFs (up, down, gluon) known to ~ 1-2% accuracy
- ➤ For many LHC applications, you can use PDF4LHC15 set, which merges CT14, MMHT2014, NNPDF30
- ➤ Situation is not full consensus: ABM group claims substantially different gluon distribution

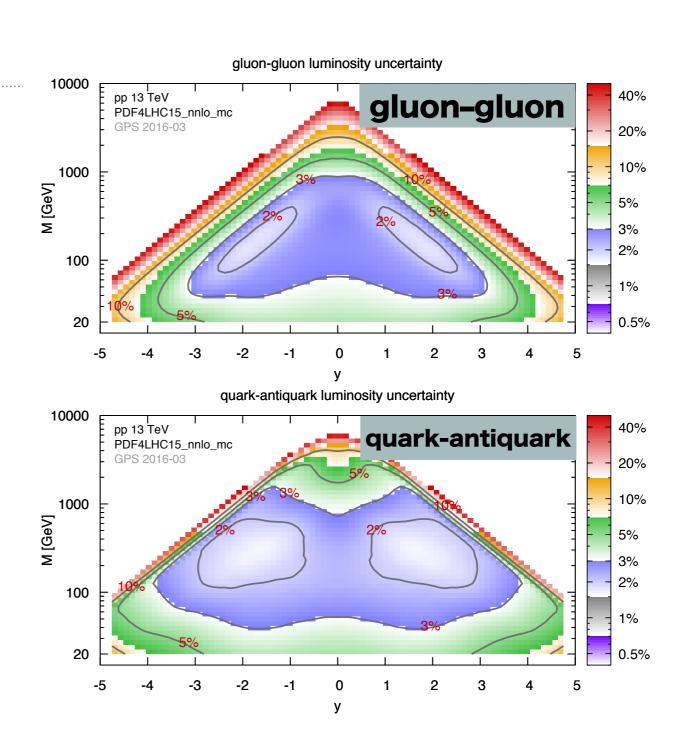
For visualisations of PDFs and related quantities, a good place to start is

http://apfel.mi.infn.it/ (ApfelWeb)

EXTRA SLIDES

PDFs: WHAT ROUTE FOR PROGRESS?

- ➤ Current status is 2–3% for core "precision" region
- ➤ Path to 1% is not clear e.g. Z p_T's strongest constraint is on qg lumi, which is already best known (why?)
- ➤ It'll be interesting to revisit the question once ttbar, incl. jets, Z p_T, etc. have all been incorporated at NNLO
- ➤ Can expts. get better lumi determination? 0.5%?



PDF THEORY UNCERTAINTIES

Theory Uncertainties

quark-gluon luminosity: INNLO-NLOI/(2NNLO)

