Additive Manufacturing

Banner Additive Manufacturing

Additive manufacturing, also known as 3D printing, is a bottom-up approach in which a part is manufactured layer by layer from a 3D computer model. In the SMAM group, we study the influence of the processing parameters on the microstructural evolution during the printing process. This is achieved by fast operando X-ray diffraction, radiography and small-angle scattering, combined with state-of-the-art post-processing characterisation techniques. 

Laser powder bed fusion is a very complex technique, with many variables. To ensure an optimal build quality, in situ process monitoring is crucial. In a SNF funded Sinergia project, the SMAM group, in collaboration with research groups from EPFL, EMPA and PSI  aim to develop an online monitoring strategy for additive manufacturing. 

Laser powder-bed fusion (LPBF) is the most widely used additive manufacturing process for monolithic metal parts. Many applications would greatly profit if more then one materials could be co-processed in the powder bed. Besides offering a much wider design space, multi-material LPBF would allow for producing functional parts without joining and assembly operations, and add 'function for free' as a new dimension to LPBF. In this project, we explore laser exposure strategies that allow controlled 3D printing of multi-material.

Laser powder bed fusion has great potential to design advanced alloys in situ during the printing process. We explore by operando X-ray diffraction the phase evolution during 3D printing of powder mixtures.

Dr. Steven Van Petegem
Structure and Mechanics of Advanced Materials
Photon Science Division 
Paul Scherrer Institute
Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 2537 
E-mail: [email protected]

OSZAR »