Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS)


Duration: Longterm observations spanning multiple decades
Funding: various (see below)
Contact: Benjamin Brem [email protected] and Martin Gysel-Beer, [email protected]

Table of Contents

Observation network of the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Source: www.actris.eu

The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) is the pan-European research infrastructure producing high-quality data and information on short-lived atmospheric constituents and on the processes leading to the variability of these constituents in natural and controlled atmospheres.

ACTRIS Science: https://www.youtube.com/watch?v=jwpc_aZJdAU

The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment. ACTRIS serves a vast community of users working on observations, experiments, models, satellite data, analysis and predicting systems. It offers access to advanced technological platforms for exploration of the relevant atmospheric processes in the fields of climate change and air quality.

Included in ESFRI Roadmap in 2016, ACTRIS achieved the ESFRI landmark status in 2021 and was formally established as a European Research Infrastructure Consortium (ACTRIS ERIC) in 2023.

ACTRIS ERIC web page: https://www.actris.eu/
ACTRIS Switzerland web page:
https://www.actris.ch/
ESFRI project and landmarks: http://roadmap2018.esfri.eu/projects-and-landmarks/browse-the-catalogue/actris/

ACTRIS-IMP project

Duration: 2020-2023
Funding: European Commission under Horizon 2020 – Research and Innovation Framework Programme, H2020-INFRADEV-2019-2, Grant Agreement number: 871115
Contact: Martin Gysel-Beer ([email protected])

The transition of ACTRIS towards an ERIC and implementation of the ERIC is supported through the ACTRIS-IMP project. ACTRIS-IMP further supported pilot phase transnational access to the JFJ national facility.

Duration: 2021-2024 (implementation phase)
Funding: Swiss State Secretariat for Education Research and Innovation (SERI)
Contact: Martin Gysel-Beer, [email protected]
Web page: https://www.actris.ch/

Atmospheric composition and processes play a key role in environmental and societal challenges such as air quality, adverse health impacts or climate change. Permanent and long-term observations of aerosols, clouds and trace gases at distributed National Facilities are performed by ACTRIS ERIC member countries. This is vital for producing observational data products of high quality and with sufficient spatial coverage, making them openly available for any kind of users and services, and providing a platform for researchers to address the challenges associated with these atmospheric constituents in an effective and comprehensive manner.

In ACTRIS, the National Facilities are comprised of i) Observational Platforms, which cover the classical measurements of atmospheric air pollutants and cloud properties at rural and background sites and of ii) Exploratory Platforms, which are additional facilities for answering more science-based questions, such as atmospheric simulation chambers and mobile installations. ACTRIS also has European level Central Facilities which include Head Office, Data Centre and Topical Centres for training, calibration and operation support.

PSI is coordinating the ACTRIS Switzerland consortium with Empa, University of Berne, ETH Zurich, PMOD/WRC and MeteoSwiss as further partners. Altogether, ACTRIS-CH contributes to two Topical Centres of ACTRIS and runs two Observational Platforms as well as one exploratory platform as National Facilities of ACTRIS, as illustrated in below figure. PSI is involved in multiple National Facilities of ACTRIS, as detailed in the following.

National Facilities and contributions to Central Facilities during implementation of ACTRIS Switzerland (ACTRIS-CH) as foreseen to be integrated in the ACTRIS ERIC.

Jungfraujoch observational platform (JFJ)

Contact: Benjamin Brem ([email protected]) and Martin Gysel-Beer ([email protected])
More info: https://www.psi.ch/de/lac/actris-observatories and https://www.actris.ch/

The research programmes on trace gases (i.e. greenhouse gases, reactive air pollutants) and aerosols at the Jungfraujoch (JFJ, 3571 m a.s.l.) are among the most comprehensive worldwide. The JFJ research station, operated by the foundation High Altitude Research Stations Jungfraujoch & Gornergrat (HFSJG), is the highest research station in Europe that is accessible all year by rail, and it is the only accessible observation point in Europe with adequate infrastructure that is within the free troposphere most of the year. Therefore, the JFJ station is of utmost importance for ground-based observations of the free troposphere, which is reflected by its participation in more than thirty national and international networks for atmospheric research. EMPA continuously measures more than 70 gaseous species of reactive gases and greenhouse gases including some of their isotopes. PSI measures all aerosol variables including aerosol physical, optical and chemical properties. As the observatory is within clouds around 40% of the time throughout the year, it provides a unique opportunity for in situ studies of liquid clouds (in summer) and mixed-phase and glaciated clouds (in winter). Continuous cloud in-situ observations are covered by ETH Zurich.

Transnational access opportunities to this user facility are made available through the ACTRIS-IMP and ATMO-ACCESS projects (see also below).

Jungfraujoch Research Station (Photo: Nora Nowak, PSI)

Payerne observational platform (PAY)

Contact: Benjamin Brem ([email protected]) and Martin Gysel-Beer ([email protected])
More info: https://www.psi.ch/de/lac/actris-observatories and https://www.actris.ch/

The Aerological Station of Payerne is operated by the Federal Office of Meteorology and Climatology MeteoSwiss. Observations include continuous remote sensing profiling of atmospheric parameters (relative humidity, temperature, and wind profiles), aerosols (optical and microphysical parameters), and clouds (cloud base height and cloud cover) within EARLINET (one of the predecessors of ACTRIS) since 2008 and AERONET since 2018. MeteoSwiss also operates microwave radiometers and Doppler lidars and radars and performs radio soundings twice a day providing high quality temperature, humidity and wind profiles. The parameters covered by continuous observations are being upgraded as part of ACTRIS-CH implementation. PSI adds a range of in-situ aerosol observations to determine aerosol physical, optical and chemical properties. The University of Berne together with MeteoSwiss add advanced cloud remote sensing capabilities. It is foreseen to integrate the Payerne site together with the Beromünster site (operated by Empa/NABEL) as Swiss Midland national facility in the ACTRIS-ERIC that covers a comprehensive set of observations of short-lived atmospheric constituents through multiple in-situ and remote sensing approaches.

Payerne observatory of MeteoSwiss, which hosts the ACTRIS national facility. Photo: MeteoSwiss

PSI Atmospheric Chemistry Simulation chamber exploratory platform (PACS)

Contact: Dave Bell ([email protected]) and Imad El Haddad ([email protected])
More info: https://www.actris.ch/

PACS is a stationary 9 m3 cool chamber that can be operated in the temperature range from -10 °C to +30 °C. PSI has a full complement for state-of-the-art instrumentation. The chamber can be equipped with the following gas-phase instruments: a proton-transfer reaction time of flight mass spectrometer, a chemical ionisation atmospheric pressure interface time of flight MS, as well as the standard NOx and ozone monitors. A whole suite of instruments is available for the characterisation of the particle phase. Specific expertise includes generation of complex emissions from a range of combustion sources present in the atmosphere (e.g., wood or coal combustion).

Transnational access opportunities to this user facility are made available through the ATMO-ACCESS project (see also below).

Inside the cool chamber

Duration: 2021-2025
Funding: European Commission under Horizon 2020 - Research and Innovation Framework Programme, H2020-INFRAIA-2020-1, Grant Agreement number: 101008004
Contact: Martin Gysel-Beer ([email protected]) and Dave Bell ([email protected])
Web page: https://www.atmo-access.eu/

Scientific and logistical assistance as well as financial support for performing experiments at the JFJ and PACS facilities is provided by ACTRIS through the transnational access scheme of the ATMO-ACCESS project. Please do not hesitate to approach the contacts provided for each facility if you were e.g. interested in running an instrument that complements our experimental setup or in performing an experiment addressing your own research question. More information is provided on the ATMO ACCESS web page, which also serves as entry point for the formal TNA application process: https://www.atmo-access.eu/calls/.

Aerosol observations within ACTRIS-CH are tightly linked to the Swiss contribution to the Global Atmosphere Watch programme, which is coordinated by MeteoSwiss. Further info at:
PSI: GAW Aerosol Montioring at Jungfraujoch
MeteoSwiss: GAW-CH

A selection of other projects of the LAC, which make use of the ACTRIS Switzerland research facilities, are listed in below table. More information on projects by ACTRIS Switzerland partners is available at: https://www.actris.ch/

The ACTRIS ERIC combines the heritage of multiple EU-funded infrastructure development projects that addressed different components which are now integrated in the ACTRIS ERIC:

  • ACTRIS-ERIC implementation: ACTRIS-PPP ACTRIS-IMP
  • Aerosol in-situ observations: EUSAAR ACTRIS → ACTRIS-2
  • Aerosol remote sensing: EARLINET
  • Chamber facilities: EUROCHAMP → EUROCHAMP-2 → EUROCHAMP-2020
  • Cloud remote sensing: CLOUDNET
OSZAR »